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Example: image classification (multiclass)

ImageNet figure borrowed from vision.standford.edu



Multiclass classification

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷
• 𝑥𝑖 ∈ 𝑅𝑑 , 𝑦𝑖∈ {1,2,… , 𝐾}

• Find 𝑓 𝑥 : 𝑅𝑑 → {1,2, … , 𝐾} that outputs correct labels

• What kind of 𝑓?



Approaches for multiclass classification



Approach 1: reduce to regression

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes ෠𝐿 𝑓𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑤𝑇𝑥𝑖 − 𝑦𝑖

2

• Bad idea even for binary classification
Reduce to linear regression; 

ignore the fact 𝑦 ∈ {1,2. . . , 𝐾}



Approach 1: reduce to regression

Figure from
Pattern Recognition and
Machine Learning, Bishop

Bad idea even 
for binary 

classification



Approach 2: one-versus-the-rest

• Find 𝐾 − 1 classifiers 𝑓1, 𝑓2, … , 𝑓𝐾−1
• 𝑓1 classifies 1 𝑣𝑠 {2,3,… , 𝐾}

• 𝑓2 classifies 2 𝑣𝑠 {1,3,… , 𝐾}

• …

• 𝑓𝐾−1 classifies 𝐾 − 1 𝑣𝑠 {1,2,… , 𝐾 − 2}

• Points not classified to classes {1,2,… , 𝐾 − 1} are put to class 𝐾

• Problem of ambiguous region: some points may be classified to more 
than one classes



Approach 2: one-versus-the-rest

Figure from
Pattern Recognition and
Machine Learning, Bishop



Approach 3: one-versus-one

• Find 𝐾 − 1 𝐾/2 classifiers 𝑓(1,2), 𝑓(1,3), … , 𝑓(𝐾−1,𝐾)
• 𝑓(1,2) classifies 1 𝑣𝑠 2

• 𝑓(1,3) classifies 1 𝑣𝑠 3

• …

• 𝑓(𝐾−1,𝐾) classifies 𝐾 − 1 𝑣𝑠 𝐾

• Computationally expensive: think of 𝐾 = 1000

• Problem of ambiguous region



Approach 3: one-versus-one

Figure from
Pattern Recognition and
Machine Learning, Bishop



Approach 4: discriminant functions

• Find 𝐾 scoring functions 𝑠1, 𝑠2, … , 𝑠𝐾
• Classify 𝑥 to class 𝑦 = argmax𝑖 𝑠𝑖(𝑥)

• Computationally cheap

• No ambiguous regions



Linear discriminant functions

• Find 𝐾 discriminant functions 𝑠1, 𝑠2, … , 𝑠𝐾
• Classify 𝑥 to class 𝑦 = argmax𝑖 𝑠𝑖(𝑥)

• Linear discriminant: 𝑠𝑖(𝑥) = 𝑤𝑖 𝑇
𝑥, with 𝑤𝑖 ∈ 𝑅𝑑



Linear discriminant functions

• Linear discriminant: 𝑠𝑖(𝑥) = 𝑤𝑖 𝑇
𝑥, with 𝑤𝑖 ∈ 𝑅𝑑

• Lead to convex region for each class: by 𝑦 = argmax𝑖 𝑤𝑖 𝑇
𝑥

Figure from
Pattern Recognition and
Machine Learning, Bishop



Conditional distribution as discriminant

• Find 𝐾 discriminant functions 𝑠1, 𝑠2, … , 𝑠𝐾
• Classify 𝑥 to class 𝑦 = argmax𝑖 𝑠𝑖(𝑥)

• Conditional distributions: 𝑠𝑖(𝑥) = 𝑝(𝑦 = 𝑖|𝑥)

• Parametrize by 𝑤𝑖: 𝑠𝑖(𝑥) = 𝑝𝑤𝑖(𝑦 = 𝑖|𝑥)



Multiclass logistic regression



Review: binary logistic regression

• Sigmoid

𝜎 𝑤𝑇𝑥 + 𝑏 =
1

1 + exp(−(𝑤𝑇𝑥 + 𝑏))

• Interpret as conditional probability

𝑝𝑤 𝑦 = 1 𝑥 = 𝜎 𝑤𝑇𝑥 + 𝑏

𝑝𝑤 𝑦 = 0 𝑥 = 1 − 𝑝𝑤 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤𝑇𝑥 + 𝑏

• How to extend to multiclass?



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 1|𝑥 =
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 1 𝑝 𝑦 = 1 + 𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
=

1

1 + exp(−𝑎)
= 𝜎(𝑎)

where we define 

𝑎 ≔ ln
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
= ln

𝑝 𝑦 = 1|𝑥

𝑝 𝑦 = 2|𝑥



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• 𝑝 𝑦 = 1|𝑥 = 𝜎 𝑎 = 𝜎(𝑤𝑇𝑥 + 𝑏) is equivalent to setting log odds

𝑎 = ln
𝑝 𝑦 = 1|𝑥

𝑝 𝑦 = 2|𝑥
= 𝑤𝑇𝑥 + 𝑏

• Why linear log odds?



Review: binary logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• log odd is

𝑎 = ln
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
= 𝑤𝑇𝑥 + 𝑏

where 

𝑤 = 𝜇1 − 𝜇2, 𝑏 = −
1

2
𝜇1
𝑇𝜇1 +

1

2
𝜇2
𝑇𝜇2 + ln

𝑝(𝑦 = 1)

𝑝(𝑦 = 2)



Multiclass logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 𝑖|𝑥 =
𝑝 𝑥|𝑦 = 𝑖 𝑝(𝑦 = 𝑖)

σ𝑗 𝑝 𝑥|𝑦 = 𝑗 𝑝(𝑦 = 𝑗)
=

exp(𝑎𝑖)

σ𝑗 exp(𝑎𝑗)

where we define 
𝑎𝑖 ≔ ln [𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 ]



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Then

𝑎𝑖 ≔ ln 𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 = −
1

2
𝑥𝑇𝑥 + 𝑤𝑖

𝑇

𝑥 + 𝑏𝑖

where 

𝑤𝑖 = 𝜇𝑖 , 𝑏𝑖 = −
1

2
𝜇𝑖
𝑇𝜇𝑖 + ln 𝑝 𝑦 = 𝑖 + ln

1

2𝜋 𝑑/2



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Cancel out −
1

2
𝑥𝑇𝑥, we have

𝑝 𝑦 = 𝑖|𝑥 =
exp(𝑎𝑖)

σ𝑗 exp(𝑎𝑗)
, 𝑎𝑖 ≔ 𝑤𝑖 𝑇

𝑥 + 𝑏𝑖

where 

𝑤𝑖 = 𝜇𝑖 , 𝑏𝑖 = −
1

2
𝜇𝑖
𝑇𝜇𝑖 + ln 𝑝 𝑦 = 𝑖 + ln

1

2𝜋 𝑑/2



Multiclass logistic regression: conclusion

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Then

𝑝 𝑦 = 𝑖|𝑥 =
exp( 𝑤𝑖 𝑇

𝑥 + 𝑏𝑖)

σ𝑗 exp( 𝑤𝑗 𝑇𝑥 + 𝑏𝑗)

which is the hypothesis class for multiclass logistic regression

• It is softmax on linear transformation; it can be used to derive the negative log-
likelihood loss (cross entropy)



Softmax

• A way to squash 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑖 , … ) into probability vector 𝑝

softmax 𝑎 =
exp(𝑎1)

σ𝑗 exp(𝑎𝑗)
,
exp(𝑎2)

σ𝑗 exp(𝑎𝑗)
, … ,

exp 𝑎𝑖

σ𝑗 exp 𝑎𝑗
, …

• Behave like max: when 𝑎𝑖 ≫ 𝑎𝑗 ∀𝑗 ≠ 𝑖 , 𝑝𝑖 ≅ 1, 𝑝𝑗 ≅ 0



Cross entropy for conditional distribution

• Let 𝑝data(𝑦|𝑥) denote the empirical distribution of the data

• Negative log-likelihood 

−
1

𝑛
σ𝑖=1
𝑛 log 𝑝 𝑦 = 𝑦𝑖 𝑥𝑖 = −E𝑝data(𝑦|𝑥) log 𝑝(𝑦|𝑥)

is the cross entropy between 𝑝data and the model output 𝑝

• Information theory viewpoint: KL divergence

𝐷(𝑝data| 𝑝 = E𝑝data[log
𝑝data

𝑝
] = E𝑝data [log 𝑝data] − E𝑝data[log 𝑝]

Entropy; constant Cross entropy



Cross entropy for full distribution

• Let 𝑝data(𝑥, 𝑦) denote the empirical distribution of the data

• Negative log-likelihood 

−
1

𝑛
σ𝑖=1
𝑛 log 𝑝(𝑥𝑖 , 𝑦𝑖) = −E𝑝data(𝑥,𝑦) log 𝑝(𝑥, 𝑦)

is the cross entropy between 𝑝data and the model output 𝑝



Multiclass logistic regression: summary

Label 𝑦𝑖

(𝑤𝑗)𝑇ℎ + 𝑏𝑗
softmax

Last hidden layer ℎ

𝑝𝑗

Cross entropy

Linear Convert to probability Loss


