Machine Learning Basics
Lecture 7: Multiclass Classification

Princeton University COS 495

Instructor: Yingyu Liang



Example: image classification

Indoor outdoor



Example: image classification (multiclass)

ImageNet figure borrowed from vision.standford.edu



Multiclass classification

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* X (S Rd, yiE {1,2, ,K}

* Find f(x): R% — {1,2, ..., K} that outputs correct labels

* What kind of [7?



Approaches for multiclass classification



Approach 1: reduce to regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Find f,,(x) = w”x that minimizes L(f,,) = %Z}Ll(WTxi — ¥i)*

* Bad idea even for binary classification




Approach 1: reduce to regression
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.



Approach 2: one-versus-the-rest

* Find K — 1 classifiers f3, 5, ..., fx -1
* f; classifies 1 vs {2,3, ..., K}
* f, classifies 2 vs {1,3, ..., K}

* frx_q classifies K —1vs {1,2,...,K — 2}
* Points not classified to classes {1,2, ..., K — 1} are put to class K

* Problem of ambiguous region: some points may be classified to more
than one classes



Approach 2: one-versus-the-rest

Figure from
Pattern Recognition and
Machine Learning, Bishop




Approach 3: one-versus-one

* Find (K — 1)K /2 classifiers f(1 2y, f(1,3), ) k-1,
° f(1,2) classifies 1 vs 2
o f(1,3) classifies 1 vs 3

* fk-1k) classifies K — 1 vs K

* Computationally expensive: think of K = 1000
* Problem of ambiguous region



Approach 3: one-versus-one

Figure from
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Approach 4: discriminant functions

* Find K scoring functions sy, S5, ..., Sk
* Classify x to class y = argmax; s;(x)

 Computationally cheap
* No ambiguous regions



Linear discriminant functions

* Find K discriminant functions s4, s, ..., Sg
* Classify x to class y = argmax; s;(x)

T .
* Linear discriminant: s;(x) = (W‘) x, with w! € R



Linear discriminant functions

T .
* Linear discriminant: s;(x) = (W‘) x, with w! € R4

\T
* Lead to convex region for each class: by y = argmax; (W‘) X
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Conditional distribution as discriminant

* Find K discriminant functions s4, s, ..., Sg
* Classify x to class y = argmax; s;(x)

* Conditional distributions: s;(x) = p(y = i|x)

* Parametrize by w': s;(x) = p,i(y =i|x)



Multiclass logistic regression



Review: binary logistic regression

e Sigmoid
1

1+ exp(—(wlx + b))
* Interpret as conditional probability

owlx +b) =

p,(y = 1|x) = c(wlx + b)

pw(@=0lx)=1-p,(y=1lx) =1 —-c(w"x + b)

e How to extend to multiclass?



Review: binary logistic regression

* Suppose we model the class-conditional densities p(x|y = i) and
class probabilities p(y = i)

e Conditional probability by Bayesian rule:

plxly = Dp(y =1 _
pxly=Dply=1D +pkxly=2)p(y =2) 1+exp(—a)

p(y =1lx) = =o(a)

where we define
p(xly = Dply =1) i p(y = 1|x)
p(xly =2)p(y = 2) p(y = 2|x)




Review: binary logistic regression

* Suppose we model the class-conditional densities p(x|y = i) and
class probabilities p(y = 1)

*p(y =1|x) = o(a) = a(wlx + b) is equivalent to setting log odds

= 1|x
a=lnp(y |)=WTX+b

p(y = 2|x)

* Why linear log odds?



Review: binary logistic regression

* Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
pixly = ) = Nxlui, 1) = g exp{= [Ix = il '}

* log odd is
xly=1 =1
"= 1In p(xly = Dp(y = 1) Wt b
p(xly =2)p(y = 2)
where ( )
1 1 p(y =1
W= — My, b=—spipu +-uzpp +1n

2 2 p(y = 2)



Multiclass logistic regression

* Suppose we model the class-conditional densities p(x|y = i) and
class probabilities p(y = i)

e Conditional probability by Bayesian rule:

b(y = i[x) = pixly=idply =9 _ exp(a)
2ipxly =pDp(y =j) Xxjexp(a)

where we define
a; ==1In [p(x|ly = Dp(y = i)]



Multiclass logistic regression

* Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
pixly = ) = Nxlui, 1) = g exp{= [Ix = il '}

* Then
T

a; ==In|p(x|ly =i)p(y =i)] = —%xTx + (w!) x +b°

where

. . 1 1
— — T —
wh=p, bt =—cuu+Inply S l)+ln(2n)d/2



Multiclass logistic regression

* Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
pixly = ) = Nxlui, 1) = g exp{= [Ix = il '}

1
e Cancel out — ExTx, we have

exp(a;)

exp(a)’ T (') x + b
J

p(y = i|x) =3

where
; 1

. 1
— _ T —
wh=p, bt =—cuu+Inp(y S l)+ln(2ﬂ)d/2




Multiclass logistic regression: conclusion

* Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
pixly = D) = NGl ) = sz exp{=5 [Ix — il 3

* Then

exp( (wi)Tx + bY)
jexp((w/)Tx + bJ)
which is the hypothesis class for multiclass logistic regression

p(y = i|x) =3

* |tis softmax on linear transformation; it can be used to derive the negative log-
likelihood loss (cross entropy)



Softmax

* Away to squash a = (a4, a,, ..., a;, ...) into probability vector p

softmax(a) = exp(a1) _exp(az) exp(a;)
Y. exp(a;) X exp(a;)’ ""Zj eXp(aj)'

* Behave like max: when a; > a;(Vj #i),p; = 1,p; =0



Cross entropy for conditional distribution

* Let pyata(V|x) denote the empirical distribution of the data
* Negative log-likelihood

1
— =it logp(y = yilx;) = —E, 10 logp(y]x)

n
is the cross entropy between p4,1, and the model output p

* Information theory viewpoint: KL divergence

D(Pdatal IP) = Epgy, 108722 = Ep, ., [108 Pdata] — Epg,e, [log ]

Y Y
Entropy; constant  Cross entropy



Cross entropy for full distribution

* Let pyata (X, V) denote the empirical distribution of the data

* Negative log-likelihood
1
——i=1108p(x;, ¥i) = —Ep acr) 108 P (X, ¥)

n
is the cross entropy between p4,1, and the model output p



Multiclass logistic regression: summary

Last hidden layer h Label

Cross-entropy

softmax

NTh+ bJ

90006

\ ) \ J

Y Y Y
Linear Convert to probability Loss




