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4.1  UNDIRECTED GRAPHS

Graph.  Set of vertices connected pairwise by edges. 

Why study graph algorithms? 

・Thousands of practical applications.  

・Hundreds of graph algorithms known. 

・Interesting and broadly useful abstraction. 

・Challenging branch of computer science and discrete math.
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Undirected graphs

4

Protein-protein interaction network

Reference:  Jeong et al, Nature Review | Genetics



5

Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the 
previous time point (t); and most pertinent, the 
alter’s obesity status at times t and t + 1.25 We 
used generalized estimating equations to account 
for multiple observations of the same ego across 
examinations and across ego–alter pairs.26 We 
assumed an independent working correlation 
structure for the clusters.26,27

The use of a time-lagged dependent variable 
(lagged to the previous examination) eliminated 
serial correlation in the errors (evaluated with a 
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and 
any intrinsic, stable predisposition to obesity. The 
use of a lagged independent variable for an alter’s 
weight status controlled for homophily.25 The 
key variable of interest was an alter’s obesity at 
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight 
affected an ego’s weight or that an ego and an 
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego 
and the alter affected the association between the 
ego’s obesity and the alter’s obesity. For example, 
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity, 
then the directionality of friendship should not 
have been relevant.

We evaluated the role of a possible spread in 
smoking-cessation behavior as a contributor to 
the spread of obesity by adding variables for the 
smoking status of egos and alters at times t and 
t + 1 to the foregoing models. We also analyzed 
the role of geographic distance between egos 
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social 
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle 
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status: 
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the 
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange 
denotes a familial tie.
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The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
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Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803 8

10 million Facebook friends

"Visualizing Friendships" by Paul Butler
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The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Terrorist networks
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Relationships among individuals associated with the 2004 Madrid bombings 

Connecting the Dots: Can the tools of graph theory and social-network studies unravel the next big plot? 
http://www.americanscientist.org/issues/pub/connecting-the-dots

Sexual network
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Structure of romantic and sexual relations at "Jefferson High School” 

Researchers Map The Sexual Network Of An Entire High School 
http://researchnews.osu.edu/archive/chains.htm  and http://www.soc.duke.edu/~jmoody77/chains.pdf

12

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond
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Graph terminology

Path.  Sequence of vertices connected by edges. 

Cycle.  Path whose first and last vertices are the same. 

Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge.  Which graph problems are easy? difficult? intractable?

problem description

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?

Euler cycle Is there a cycle that uses each edge exactly once ?

Hamilton cycle Is there a cycle that uses each vertex exactly once ?

connectivity Is there a path between every pair of vertices ?

biconnectivity Is there a vertex whose removal disconnects the graph ?

planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Are two graphs isomorphic?
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Some graph-processing problems

http://algs4.cs.princeton.edu
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4.1  UNDIRECTED GRAPHS

Graph drawing.  Provides intuition about the structure of the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caveat.  Intuition can be misleading.
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Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph



Vertex representation. 

・This lecture:  use integers between 0 and V – 1. 

・Applications:  convert between names and integers with symbol table. 

 
 
 
 
 
 
 
 
 
 
 
Anomalies.  

A

G

E

CB

F

D

17

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop
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Graph API

       public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

// degree of vertex v in graph G 
public static int degree(Graph G, int v) 
{ 
    int degree = 0; 

    for (int w : G.adj(v)) 
       degree++; 
    return degree; 

}

Toy API. No efficient 
way to compute degree, 

check if edge exists, etc.

Maintain a two-dimensional V-by-V boolean array;  
for each edge v–w in graph:  adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0
5 1 0 0 1 1 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

19

Graph representation:  adjacency matrix

two entries 
for each edge

87

109

1211

0

6

4

21

5

3

Which is order of growth of running time of the following code fragment if 

the graph uses the adjacency-matrix representation, where V is the number 

of vertices and E is the number of edges? 

 

A.   V 

B.   E + V

C.   V 2 

D.   V E 

E.   I don't know.
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Undirected graphs:  quiz 1

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

prints edges



Maintain vertex-indexed array of lists. 

We use Bag objects because we don’t care about the 

order in which we iterate over the adjacent vertices.

21

Graph representation:  adjacency lists

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

109

1211

0

6

4

21

5

3

Which is order of growth of running time of the following code fragment if 

the graph uses the adjacency-lists representation, where V is the number of 

vertices and E is the number of edges? 

A.   V 

B.   E + V

C.   V 2 

D.   V E 

E.   I don't know.
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Undirected graphs:  quiz 2

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

degree(v0)  +  degree(v1)  +  degree(v2)   + …   =   2 E

prints edges

Homework:  

verify answer

In practice.  Use adjacency-lists representation. 

・Algorithms based on iterating over vertices adjacent to v. 

・Real-world graphs tend to be sparse.

23

Graph representations

huge number of vertices, 
small average vertex degree

sparse  (E = 200) dense  (E = 1000)

Two graphs (V = 50)

In practice.  Use adjacency-lists representation. 

・Algorithms based on iterating over vertices adjacent to v. 

・Real-world graphs tend to be sparse. 

Homework.  Design a representation that improves degree(v) bound for 

checking if edge exists, and is as good as adjacency lists for all other ops

24

Graph representations

representation space add edge edge between 
v and w?

iterate over vertices 
adjacent to v?

list of edges E 1 E E

adjacency matrix V 2     1 † 1 V

adjacency lists E + V 1 degree(v) degree(v)

† disallows parallel edges

huge number of vertices, 
small average vertex degree
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Adjacency-list graph representation:  Java implementation

public class Graph 
{ 

}

private final int V;  
private Bag<Integer>[] adj;

public Iterable<Integer> adj(int v) 
{  return adj[v];  }

public Graph(int V) 
{ 
  this.V = V; 
  adj = (Bag<Integer>[]) new Bag[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Bag<Integer>(); 
}

public void addEdge(int v, int w) 
{ 
  adj[v].add(w);  
  adj[w].add(v);  
}

adjacency lists 
( using Bag data type )

create empty graph 
with V vertices

add edge v-w 
(parallel edges and 
self-loops allowed)

iterator for vertices adjacent to v

Skipped 

in class
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Maze exploration

Maze graph. 

・Vertex = intersection. 

・Edge = passage. 

Goal.  Explore every intersection in the maze.

intersection passage

28

Maze exploration: National Building Museum

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist



Algorithm. 

・Unroll a ball of string behind you. 

・Mark each newly discovered intersection and passage. 

・Retrace steps when no unmarked options.
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Trémaux maze exploration

Tremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux exploration
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Trémaux maze exploration

Algorithm. 

・Unroll a ball of string behind you. 

・Mark each newly discovered intersection and passage. 

・Retrace steps when no unmarked options. 

First use?  Theseus entered Labyrinth to kill the monstrous Minotaur; 
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with electromechanical mouse)
http://www.corp.att.com/attlabs/reputation/timeline/16shannon.html

The Cretan Labyrinth (with Minotaur)
http://commons.wikimedia.org/wiki/File:Minotaurus.gif

31

Maze exploration

32

Maze exploration:  challenge for the bored



Goal.  Systematically traverse a graph. 

Idea.  Mimic maze exploration. 

 
 
 
 
 
 
 
 
Typical applications. 

・Find all vertices connected to a given source vertex. 

・Find a path between two vertices. 

Depth-first search

Mark vertex v.
Recursively visit all unmarked
          vertices w adjacent to v.

DFS (to visit a vertex v)

function-call stack acts as ball of string

DFS of a tree (starting at the root) corresponds to which traversal? 

A.   In-order 

B.   Pre-order

C.   Post-order 

D.   Level-order 

E.   I don't know.

Trick question! DFS doesn’t care about order of visiting adjacent nodes.  

May correspond to pre-order or to none of the orders.

34

Undirected graphs:  quiz 3

Mark vertex v.
Recursively visit all unmarked
          vertices w adjacent to v.

DFS (to visit a vertex v)

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo
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graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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109

1211

0

6

4

21

5

3

Depth-first search demo
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graph G
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13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo
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graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

0  
1  
2 
3 
4  
5 
6 
7 
8 
9  

10 
11 
12

v marked[]

F 
F  
F 
F 
F  
F 
F 
F 
F 
F  
F 
F 
F

edgeTo[]

– 
–  
– 
– 
–  
– 
– 
– 
– 
–  
– 
– 
–

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

00 87

109

1211

6

4

21

5

3

Depth-first search demo
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0  
1  
2 
3 
4  
5 
6 
7 
8 
9  

10 
11 
12

v marked[]

T 
F  
F 
F 
F  
F 
F 
F 
F 
F  
F 
F 
F

edgeTo[]

– 
–  
– 
– 
–  
– 
– 
– 
– 
–  
– 
– 
–

visit 0:  check 6, check 5, check 2, check 1, done

66

00

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

4

21

5

3

Depth-first search demo
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v marked[]

T 
F  
F 
F 
F  
F 
T 
F 
F 
F  
F 
F 
F

edgeTo[]

– 
–  
– 
– 
–  
– 
0 
– 
– 
–  
– 
– 
–

visit 6:  check 0, check 4, done

00

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

6

4
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5
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Depth-first search demo
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v marked[]

T 
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F 
F  
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F 
F  
F 
F 
F

edgeTo[]

– 
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–  
– 
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visit 6:  check 0, check 4, done



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

00

66

4

21

5

3

Depth-first search demo

41

4

21

5

3 4

87

109

1211

87

109

1211

0  
1  
2 
3 
4  
5 
6 
7 
8 
9  

10 
11 
12

v marked[]

T 
F  
F 
F 
T  
F 
T 
F 
F 
F  
F 
F 
F

edgeTo[]

– 
–  
– 
– 
6  
– 
0 
– 
– 
–  
– 
– 
–

visit 4:  check 5, check 6, check 3, done

00

44

66

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

21

5

3

Depth-first search demo
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T  
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F 
F 
F

edgeTo[]

– 
–  
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– 
6  
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– 
–

visit 5:  check 3, check 4, check 0, done
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44
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

21

3

Depth-first search demo
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visit 3:  check 5, check 4, done
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 3:  check 5, check 4, done



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 3:  check 5, check 4, done

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 5:  check 3, check 4, check 0, done

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 5:  check 3, check 4, check 0, done

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 5:  check 3, check 4, check 0, done



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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visit 4:  check 5, check 6, check 3, done

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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visit 4:  check 5, check 6, check 3, done

To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Depth-first search demo
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.
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Design pattern.  Decouple graph data type from graph processing.  

・Create a Graph object. 

・Pass the Graph to a graph-processing routine. 

・Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s); 
 for (int v = 0; v < G.V(); v++) 

    if (paths.hasPathTo(v)) 
       StdOut.println(v);

print all vertices 
connected to s

        public class Paths

Paths(Graph G, int s) find paths in G from source s 

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Modularity

As usual, client doesn’t care about implementation details, including data 

structures used

64

Client code

API
Graph 

(adjacency list)

Paths 

marked[]  edgeTo[]

Data structures

Data type
Encapsulates 

DFS algorithm



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v. 

 
Data structures. 

・Boolean array marked[] to mark vertices.  

・Integer array edgeTo[] to keep track of paths. 
(edgeTo[w] == v) means that edge v-w taken to discover vertex w 

・Function-call stack for recursion.

Depth-first search:  data structures

66

Depth-first search:  Java implementation

public class DepthFirstPaths 
{ 

}

private boolean[] marked;  
private int[] edgeTo; 
private int s;

public DepthFirstPaths(Graph G, int s) 
{ 
  ... 
  dfs(G, s); 
}

private void dfs(Graph G, int v) 
{ 
  marked[v] = true; 
  for (int w : G.adj(v)) 
     if (!marked[w])  
     { 
        edgeTo[w] = v; 
        dfs(G, w); 
     } 
}

recursive DFS does the work

marked[v] = true 
if v connected to s

edgeTo[v] = previous 
vertex on path from s to v

find vertices connected to s

initialize data structures

Depth-first search:  properties

Proposition.  DFS marks all vertices connected to s in time proportional to  
the sum of their degrees (plus time to initialize the marked[] array). 

Pf.  [correctness] 

・If w marked, then w connected to s (why?) 

・If w connected to s, then w marked. 
(if w unmarked, then consider last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one). 

Pf.  [running time]  
Each vertex connected to s is visited once.
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set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition.  After DFS, can check if vertex v is connected to s in constant 

time and can find v–s path (if one exists) in time proportional to its length. 

Pf.  edgeTo[] is parent-link representation of a tree rooted at vertex s.
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Depth-first search:  properties

 public boolean hasPathTo(int v) 
 {  return marked[v];  } 

 public Iterable<Integer> pathTo(int v) 
 { 
    if (!hasPathTo(v)) return null; 
    Stack<Integer> path = new Stack<Integer>(); 
    for (int x = v; x != s; x = edgeTo[x]) 
       path.push(x); 
    path.push(s); 
    return path; 
 }

Trace of  pathTo() computation

edgeTo[]
  0    
  1  2
  2  0
  3  2
  4  3
  5  3
  

5   5
3   3 5
2   2 3 5
0   0 2 3 5

x  path
Skipped 

in class
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4.1  UNDIRECTED GRAPHS

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Breadth-first search

Enqueue s, mark s as visited.
While queue is not empty:
  - dequeue v
  - enqueue each of v's unmarked neighbors,  

    and mark them.

BFS (from source vertex s)

Breadth-first
maze exploration

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

33

Breadth-first search demo
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3 done
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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4 done
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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done
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo
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done
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Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them. 

 
 
 
 
 
 
 
 
 
 
 
Q.  Draw another possible BFS tree of the same graph (also starting from 0) 

A.  Only one other BFS tree possible: replace 2→3 edge with 5→3 edge

Breadth-first search demo
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Breadth-first search:  Java implementation

public class BreadthFirstPaths 
{ 
   private boolean[] marked; 
   private int[] edgeTo; 
   private int[] distTo; 

   … 

   private void bfs(Graph G, int s) { 
      Queue<Integer> q = new Queue<Integer>(); 
      q.enqueue(s); 
      marked[s] = true; 
      distTo[s] = 0; 

      while (!q.isEmpty()) { 
         int v = q.dequeue(); 
         for (int w : G.adj(v)) { 
            if (!marked[w]) { 
               q.enqueue(w); 
               marked[w] = true; 
               edgeTo[w] = v; 
               distTo[w] = distTo[v] + 1; 
            } 
         } 
      } 
   } 
}

initialize FIFO queue of 
vertices to explore

found new vertex w 
via edge v-w

Skipped 

in class

Q.  In which order does BFS examine vertices? 

A.  Increasing distance (number of edges) from s. 
 
 
 
 
Proposition.  In any connected graph G, BFS computes shortest paths 
from s to all other vertices in time proportional to E + V.

Breadth-first search properties
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0
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3

graph G
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3

dist = 2dist = 1

2

1

5

0

dist = 0

s

queue always consists of ≥ 0 vertices of distance k from s, 
followed by ≥ 0 vertices of distance k+1
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Breadth-first search application:  routing

Fewest number of hops in a communication network.

ARPANET, July 1977 
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Breadth-first search application:  Kevin Bacon numbers

http://oracleofbacon.org SixDegrees iPhone App

Endless Games board game
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Kevin Bacon graph

・Include one vertex for each performer and one for each movie. 

・Connect a movie to all performers that appear in that movie. 

・Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...
  

movies.txt

V and E 
not explicitly

specified

"/"
delimiter

http://algs4.cs.princeton.edu
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Algorithms

‣ introduction 
‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ challenges

4.1  UNDIRECTED GRAPHS

Graph-processing challenge 1

Problem.  Is a graph bipartite? 

 
 
 
 
 
 
 
 
 
 
Solution: 
       modify DFS so that each node is colored opposite of its parent 

       while iterating over adjacent nodes check color 

              if same color as current node: not bipartite! 

       if graph not connected: check if each component is bipartite 
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Graph-processing challenge 2

Problem.  Find a cycle in a graph (if one exists). 

Simple DFS-based solution (see textbook). 
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Graph-processing challenge 3

Problem.  Find a cycle that uses every edge exactly once (if one exists). 

 
 
 
 
 
 
 
 
 
 
 
Bridges of Koenigsberg problem. Famously solved by Euler in 1736.  
      Cycle exists if and only if graph connected & each vertex has even degree  
 
Finding Euler cycle (if it exists): another easy application of DFS. 
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Graph-processing challenge 4

Problem.  Is there a cycle that contains every vertex exactly once? 

 
 
 
“Hamiltonian circuit” problem.  

Famously NP-complete.
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Graph-processing challenge 5

Problem.  Are two graphs identical except for vertex names? 

 
 
 
“Graph isomorphism” problem. 

Complexity is famously unresolved. 

        Not known to be solvable in polynomial time  

        nor known to be NP-complete.
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graph isomorphism is  
longstanding open problem
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Graph-processing challenge 6

Problem.  Can you draw a graph in the plane with no crossing edges? 

 
 

Linear-time but complicated DFS-based algorithm 

(by Bob Tarjan) 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Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

graph problem BFS DFS time

s-t path ✔ ✔ E + V

shortest s-t path ✔ E + V

cycle ✔ ✔ E + V

Euler cycle ✔ E + V

Hamilton cycle

bipartiteness (odd cycle) ✔ ✔ E + V

connected components ✔ ✔ E + V

biconnected components ✔ E + V

planarity ✔ E + V

graph isomorphism 2 c
�

V log V

2 1.657 V
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ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 
‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ challenges 
‣ flipped lecture experiment

4.1  UNDIRECTED GRAPHS

Next 4 lectures will be flipped

No class Wednesday 3/23 

Before Monday 3/28: 

    Watch directed graphs and minimum spanning trees lectures 

    Guna will lead flipped session (usual time and place on 3/28) 

No class Wednesday 3/30 

Before Monday 4/4: 

    Watch shortest paths and maximum flow lectures 

    Arvind will lead flipped session (usual time and place on 4/4) 

Regular lectures will resume Wednesday 4/6 
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