Algorithlns ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS

» introduction

» graph API

» depth-first search

» breadith-first search
» challenges

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > ﬂlpped /eCfUre eXpel'l.menf

4.1 UNDIRECTED GRAPHS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

« Thousands of practical applications.

» Hundreds of graph algorithms known.

« Interesting and broadly useful abstraction.

« Challenging branch of computer science and discrete math.

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The evolution of FCC lobbying coalitions

e

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Map of science clickstreams

http:/ / loson rticle/info:doi/10.1371/journal.pone.0004803

10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Sexual network

e
¢ N
R N
Sy YR TTTN Y
-:::*:‘ q'i.“,- vz‘" " \t,
-
p LT S, AT ol S — N
e Tuk o v\
L SR) — R
L4 =7 AN S
2 F R (o »
Ll S XS
g .‘F—r,,“‘ .~
‘ aeX. v
ot X1 1

#

Structure of romantic and sexual relations at "Jefferson High School”

Terrorist networks

- Ali Amrous ‘o Antonio Toro
+ Abdelhalak Bentasser
Faisal Al
: Mohamad Bard Ddin Adab Emilio Llamo
- Sanel Sjekirika Jiaul Ganzales Perez - Rachid Adii
B aaims: « Ivan Granados
Momaz.AlmnIlnh Fouad EI Morabit Anghar o José Emilio Sudrez
- Said Chedadi Abdeliah el Fouad
Mohamed Almallah . —
maan o 5
Abdeluahid Serrak Youse Hichman
Parlindumgan Siregar Mohamed El Egipcio— o « Rafa Zuher
2 - " Mohamed Chedadi 5
Aikema Lamari AU Qttader 7 o Mustafa Ahmidan
ELGhalt
(Ghiasolb A ety ’ oS [Sai Farid Oulad Ali
o Galob Kala Basel :
e o BarreK Ghayoun Jamal Ahmidan & Khalid Ouled Akcha
Driss Chebli imad Eddin Baraal ST
C shaks—— @ Jant Zoudn R + Said Ahmidan
y 58 Abdelmajic @ MNaima Oulad Akcha
Mohamed Belfatmi @ nggmm FAkhay Rachid Oulad Akcha
o > b SN Mohamed Oulad Akcha
Omar Dhegayes e s
T o s isad Asakatu Vinay Koty Abserrahim Zbakh teatene Boreioe
Abdelaziz Benyaich®. o
- Abu Avderrahame . on
IAbs Fatal o Taysir Alouny T o * Waanid Altaraki Aimasri
o a=dl
‘Abdelkarim ol Mejati Anvar Asri Rifaat
Abddenabi Kovjma
o Behasats « Anwar Adnan Ahmad

«-Mamoun Darkazanli

dividuals associated with the 2004 Madrid bombings

i ips among i

Graph applications

“

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
intersection
class C network
board position
person
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
street
connection
legal move
friendship
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
. cdge
][y(lr} of u f & l
ength 5 \
path of
« length 4
vertex of
degree 3\
connected

components

Some graph-processing problems

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?
Euler cycle Is there a cycle that uses each edge exactly once ?
Hamilton cycle Is there a cycle that uses each vertex exactly once ?
connectivity Is there a path between every pair of vertices ?
biconnectivity Is there a vertex whose removal disconnects the graph ?
planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Are two graphs isomorphic?

Challenge. Which graph problems are easy? difficult? intractable?

4.1 UNDIRECTED GRAPHS

» graph API

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.
« This lecture: use integers between 0 and V1.

« Applications: convert between names and integers with symbol table.

(™)
@) O 10 (—

symbol table

arallel

Sdfi loop pedges

Anomalies.

Graph API

public class Graph

create an empty graph with V vertices

Graph(int V)

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int VO

number of vertices

// degree of vertex v in graph G \

public static int degree(Graph G, int v) Toy API. No efficient
{ way to compute degree,
int degree = 0; check if edge exists, etc.
for (Gint w : G.adj(v))
degree++;
return degree;

Graph representation: adjacency matrix

Maintain a two-dimensional V-by-V boolean array;
for each edge v—w in graph: adj[vl[w] = adj[w][v] = true.

two entries

a for each edge
\\ 6 10

ORORO :
1

HFH HO OO0 OO © O 0 o

oo oo oo o /r oo rin
OO0 oo oo oo oo o o

0
0
0
0
0
0
0
0
0
0
0

oOo0 o0 oo o R K O
oo o0 oo kR K
oo oo o
oo oo KR o

HO oOr OO0 OO0 ©o o o

O+ OH OO0 O OO0 ©0 o o

Undirected graphs: quiz 1

Which is order of growth of running time of the following code fragment if
the graph uses the adjacency-matrix representation, where V is the number
of vertices and E is the number of edges?

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
StdOut.printin(v + "-" + w);

prints edges

A. 14

B. E+V

(et V2

D. VE

E. I don't know.

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

representations
(o9 - s
10|
ul]
(—2 o

We use Bag objects because we don’t care about the
order in which we iterate over the adjacent vertices.

Undirected graphs: quiz 2

Which is order of growth of running time of the following code fragment if
the graph uses the adjacency-lists representation, where V is the number of
vertices and E is the number of edges?

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
StdOut.printin(v + "-" + w);

prints edges

E+V
V2

VE

m o N =® »

Idon't know.

Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V =50)

Graph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

huge number of vertices,
small average vertex degree

. edge between iterate over vertices
representation space add edge X
vand w? adjacent to v?

adjacency matrix vz 1 1 \4

adjacency lists 1 degree(v)

t disallows parallel edges

Homework. Design a representation that improves degree(v) bound for
checking if edge exists, and is as good as adjacency lists for all other ops

Adjacency-list graph representation: Java implementation

public class Graph

{
private final int V;
private Bag<Integer>[] adj;
public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);
public void addEdge(int v, int w)
adj[v].addw);
adj[w].add(v);
public Iterable<Integer> adj(int v)
{ return adjlvl; }
}

—

—

adjacency lists
(using Bag data type)

create empty graph
with V vertices

add edge v-w
(parallel edges and
self-loops allowed)

iterator for vertices adjacent to v

4.1 UNDIRECTED GRAPHS

Al gorit hms » depth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Maze exploration

Maze graph.
« Vertex = intersection.
. Edge = passage.

intersection passage

Goal. Explore every intersection in the maze.

Maze exploration: National Building Museum

http:/ /www.smitt i com/travel/winding-hi: y-maze-180951998/?no-ist

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.

« Mark each newly discovered intersection and passage.

« Retrace steps when no unmarked options.

&= =
= A

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.
» Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

The Cretan Labyrinth (with Minotaur)

Maze exploration

Maze exploration: challenge for the bored

ol R e R e e e P (R

F
[inS
5

: .

e

Depth-first search

Goal. Systematically traverse a graph.
Idea. Mimic maze exploration. <— function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
« Find all vertices connected to a given source vertex.

» Find a path between two vertices.

Undirected graphs: quiz 3

DFS of a tree (starting at the root) corresponds to which traversal?

A. In-order
DFS (to visit a vertex v)
B. Pre-order
Mark vertex v.
C. Post-order Recursively visit all unmarked
vertices w adjacent to v.
D. Level-order
E. Idon't know.

Trick question! DFS doesn’t care about order of visiting adjacent nodes.

May correspond to pre-order or to none of the orders.

Depth-first search demo

To visit a vertex v: @
« Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

tinyG. txt
° O—

=iy -
13«7

05

43

01

o CO—

6 4

54

02

(O—) (—?)

9 10

06

78

9 11

5 53

graph G

Depth-first search demo

To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

e a tinyG. txt
0 ._. v

e

05

43

01

O ©®© ©» CO—O
6 4

54

02

O—) (—@)
9 10

06

78

9 11

> 53

graph G

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTo[]

Depth-first search demo

To visit a vertex v:
« Mark vertex v.
» Recursively visit all unmarked vertices adjacent to v.

g

<

marked[] edgeTo[]

: O—O
0 F =
1 F -
2 F =
(5 O— Por
4 F -
5 F =
6 F =
O—0 O0—® ;o
8 F =
9 F =
5 10 F =
1 F =
12 F =
graph G
37
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
5 (O—(Por
4 F -
5 F =
6 (@
(—) (—) 7 F
8 F =
9 F =
5 10 F =
1 F =
12 F =

visit 6: check 0,

NG
1 F -
2 F =
O ©® B CC—W oo
4 F -
5 F =
6 F =
H—© O— 7o -
8 F =
9 F =
5 10 F -
11 F =
12 F =
visit 0: check 6,
38
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
D O—® o f -
4 F -
5 F =
6 T 0
— o—» 7o -
8 F =
9 F =
5 10 F -
11 F =
12 F =
visit 6: check 4,

Depth-first search demo Depth-first search demo
To visit a vertex v: To visit a vertex v:
* Mark vertex v. « Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v. » Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTol[] v marked[] edgeTo[]
0 T = 0 T =
1 F - 1 F -
2 F = 2 F =
O— - O— Poor
4 @) ® 4 T 6
s F - BROINO
6 T 0 6 T 0
(— 7o - (—® 7o -
8 F = 8 F =
9 F = 9 F
5 10 F - 10 F -
1 F = 11 F =
12 F = 12 F =
visit 4: check 5, visit 5: check 3,
41
Depth-first search demo Depth-first search demo
To visit a vertex v: To visit a vertex v:
« Mark vertex v. « Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v. « Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[] v marked[] edgeTol]
0 T = 0 T =
1 F - 1 F -
2 F = 2 F =
CO— 2 0O © O— oo
4 T 6 4 T 6
5 T 4 5 T 4
6 T 0 6 T 0
(—2) 7o - 0— (—2) 7o -
8 F = 8 F
9 F = 9 F =
10 F - 10 F -
1 F = 11 F =
12 F = 12 F =
visit 3: check 5, visit 3: check 4,
43

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTo[]

Depth-first search demo

To visit a vertex v:
« Mark vertex v.
» Recursively visit all unmarked vertices adjacent to v.

O—®

<

marked[] edgeTo[]

0 T =
1 F -
2 F =
O— T
4 T 6
5 T 4
/ 6 T 0
® O—m» 7o
8 F =
9 F =
e 10 F =
1 F =
12 F =
visit 3: done
T 45
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
O—® i T
4 T 6
5 T 4
6 T 0
O—w» 7o
8 F =
9 F =
° 10 F =
1 F =
12 F =

visit 5: check 0,

0 T =
1 F -
2 F =
O—® i1
4 T 6
5 T 4
6 T 0
O—m 7o
8 F
9 F =
10 F -
11 F =
12 F =
visit 5: check 4,
46
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
O—® i1
4 T 6
5 T 4
6 T 0
O o—» = &
8 F
9 F =
® D oE -
11 F =
12 F =

visit 5: done

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTo[]

Depth-first search demo

To visit a vertex v:
« Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

O—®

<

marked[] edgeTo[]

0 T =
1 F -
2 F =
O— T
4 T 6
5 T 4
6 T 0
(— 7o -
8 F =
9 F =
10 F -
1 F =
12 F =
visit 4: check 6,
49
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
0 C—W T
4 T 6
5 T 4
6 T 0
o (—) 7o -
8 F =
9 F =
10 F -
1 F =
12 F =

visit 4: done

0 T =
1 F -
2 F =
O—® i1
4 T 6
5 T 4
6 T 0
—O (—® 7o -
8 F
9 F =
10 F -
11 F =
12 F =
visit 4: check 3,
50
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[]
0 T =
1 F -
2 F =
o —® 1
4 T 6
5 T 4
6 T 0
O—w» 7o
8 F
9 F =
10 F -
11 F =
12 F =

visit 6: done

Depth-first search demo Depth-first search demo
To visit a vertex v: To visit a vertex v:
* Mark vertex v. « Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v. » Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTol[] v marked[] edgeTo[]
0 T = 0 T =
1 F - 1 F -
2 F = 2 F =
O— T O— oo
4 T 6 4 T 6
5 T 4 5 T 4
6 T 0 6 T 0
(— 7o - (—® 7o -
8 F = 8 F
9 F = 9 F =
10 F - 10 F -
1 F = 11 F =
12 F = 12 F =
visit 0: check 5, visit 0: check 2,
53
Depth-first search demo Depth-first search demo
To visit a vertex v: To visit a vertex v:
« Mark vertex v. « Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v. « Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[] v marked[] edgeTol]
0 T = 0 T =
1 F - 1 F -
2 © © 2 1 o
(O—(T (2 O—9 P
4 T 6 4 T 6
5 T 4 5 T 4
6 T 0 6 T 0
(—2) 7o - (—2) 7o -
8 F = 8 F
9 F = 9 F =
10 F - 10 F -
1 F = 11 F =
12 F = 12 F =
visit 2: check 0, visit 2: done
55 T

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTo[]

Depth-first search demo

To visit a vertex v:
« Mark vertex v.
» Recursively visit all unmarked vertices adjacent to v.

0 T =
1 F =
2 T 0
6 m 3 T 5
4 T 6
5 T 4
6 T 0
O o -
8 F -
9 F =
10 F =
" F -
12 F =
visit 0: check 1,
57
Depth-first search demo
To visit a vertex v:
« Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
o v markedl] edgeToll
0 T =
1 T 0
2 T 0
@ C—® T
4 T 6
5 T 4
6 T 0
O o -
8 F -
9 F =
10 F =
" F -
12 F =

visit 1: done

v marked[] edgeTol]
0 T =
BNGINO)
2 T 0
O—® o1
4 T 6
5 T 4
6 T 0
— o -
8 F
9 F =
10 F -
11 F =
12 F =
visit 1: check 0,
58
Depth-first search demo
To visit a vertex v:
» Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.
o . . v marked[] edgeTo[]
0 T =
1 T 0
2 T 0
O—® o1
4 T 6
5 T 4
6 T 0
(—) 7P -
8 F
9 F =
10 F -
11 F =
12 F =

visit 0: done

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

<

=

® NV A WN—O

mmm Mo A oA A

vertices reachable from 0

o s o uvoo

marked[] edgeTo[]

Depth-first search demo

To visit a vertex v:
« Mark vertex v.
» Recursively visit all unmarked vertices adjacent to v.

<

0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 F
8 F
9 F
10 F
1 F
12 F

vertices reachable from 0

o s o uvoo

marked[] edgeTo[]

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
« Create a Graph object.
« Pass the Graph to a graph-processing routine.
« Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s)

find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);

for (int v = 0; v < G.VQ; v++)

if (paths.hasPathTo(v))
StdOut.printin(v);

print all vertices

R
connected to s

Modularity

As usual, client doesn’t care about implementation details, including data
structures used

Client code

API

Encapsulates
Paths «——F——

Data type — > Graph DFS algorithm

(adjacency list) marked[] edgeTo[]

//

Data structures

Depth-first search: data structures

To visit a vertex v:
* Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

Data structures.
« Boolean array marked[] to mark vertices.
« Integer array edgeTo[] to keep track of paths.
(edgeTo[w] == v) means that edge v-w taken to discover vertex w
« Function-call stack for recursion.

Depth-first search: Java implementation

public class DepthFirstPaths

marked[v] = true
«———— ifvconnectedtos

<«——— edgeTo[v] = previous

private boolean[] marked;
private int[] edgeTo;
private int s;

public DepthFirstPaths(Graph G, int s)
{

<«<———— initialize data structures

dfs(G,);

private void dfs(Graph G, int v)

marked[v] = true;

for (int w : G.adj(v))
if (Imarked[w])
{

edgeTo[w] = v;
dfs(G, w);

vertex on path from s to v

<«———— find vertices connected to s

<«———— recursive DFS does the work

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees (plus time to initialize the marked[] array).

set of marked
vertices

Pf. [correctness] source

* If w marked, then w connected to s (why?)
» If w connected to s, then w marked.
(if w unmarked, then consider last edge
on a path from s to w that goes from a

no such edge

set of <« can exist

marked vertex to an unmarked one). unmarked
vertices

Pf. [running time]
Each vertex connected to s is visited once.

Depth-first search: properties

Proposition. After DFS, can check if vertex vis connected to s in constant
time and can find v—s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v) edgeTOU
{
if ('hasPathTo(v)) return null; ; é
Stack<Integer> path = new Stack<Integer>(); 302
for (int x = v; x !=s; x = edgeTo[x]) 413
path.push(x); 513

path.push(s);
return path;

4.1 UNDIRECTED GRAPHS

Algorithms

» breadth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Breadth-first search

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

g

BFS (from source vertex s)

Enqueue s, mark s as visited.
While queue is not empty:
- dequeue v

i

- enqueue each of v's unmarked neighbors,

and mark them.

g

Breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent to vand mark them.

tinyCG. txt

Wese

\

CWWOoORNNO®O®
NUBRRNWAG

graph G

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

tinyCG. txt

v
~5

CWWO R NNO ®
NUBRRNWAOV

graph G

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v AW N = O

add 0 to queue

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

VA WN =~ O

dequeue 0

queue v edgeTo[] distTol]

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

v A WN = O

dequeue 0

queue v edgeTo[] distTol[]

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

VA WN =~ O

dequeue 0

o o

queue v edgeTo[] distTol]

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

0 done

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 - -
5 4 _
5 0 1

e queue v edgeTo[] distTol[]
0 -
1 0
2 0
3 -
4
0
O, g
dequeue 0
77
Breadth-first search demo
Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.
queue v edgeTo[] distTol[]
0 -
1 0
2 0
3 -
5 4
5 0

dequeue 2

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 2

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 - -
4 _
5 0 1

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

®/®

v AW N = O

dequeue 2

o o

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 - _
5 0 1

dequeue 2

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

)

®/® ;

v A WN = O

dequeue 2

o NN oo

— NN = =

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

e queue v edgeTo[] distTol]

0 = 0

1 0 1

@ 4 2 0 1
3 2 2

3 4 2 2

5 0 1

2 done

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
o 4 2 0 1
3 2 2
3 4 2 2
5 0 1

®/®\® ;

dequeue 1

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]

|
o

VA WN =~ O
oN N OO
— NN = —

dequeue 1

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

|
o

v A WN = O
oN N OO
— NN = =

e T 3

dequeue 1

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]

|
o

VA WN =~ O
oN N OO
— NN = —

1 done

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v AW N = O

°/®\® ;

dequeue 5

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
1
4 5 0
5
3

dequeue 5

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v A WN = O

o— o 4

dequeue 5

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
1
4 5 0
3

5 done

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v AW N = O

o— 4

dequeue 3

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
/°\® > 0 !
4

dequeue 3

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v A WN = O

°\®

dequeue 3

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
© A
4

dequeue 3

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v AW N = O

3 done

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

dequeue 4

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

v A WN = O

dequeue 4

oN N OO

— NN = =

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

dequeue 4

100

Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

Breadth-first search demo

Repeat until queue is empty:
» Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

0 - 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

4 done

101
Breadth-first search demo
Repeat until queue is empty:
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.
0 »(2
> v edgeTo[] distTo[]

0 - 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

done

0 »(2
L v edgeTo[] distTo[]
0 - 0
1 0 1
2 0 1
3 2 2
4 2 2
© S0
done
102
Breadth-first search demo
Repeat until queue is empty:
* Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.
0 »(2
L~ v edgeTo[] distTol]
0 - 0
1 0 1
2 0 1
3 2 2
4 2 2
© S0

Q. Draw another possible BFS tree of the same graph (also starting from 0)
A. Only one other BFS tree possible: replace 2—3 edge with 5—3 edge

104

Breadth-first search: Java implementation

public class BreadthFirstPaths
{

private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {

Queue<Integer> q = new Queue<Integer>(Q);
g.enqueue(s);
marked[s] = true;
distTo[s] = 0;
while (!q.isEmpty()) {

int v = g.dequeue();

for (int w : G.adj(V)) {

if (!marked[w]) {
q.enqueue(w);

marked[w] = true;]

edgeTo[w] 'S
distTo[w] = distTo[v] + 1;

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s.

N

queue always consists of > 0 vertices of distance k from s,

followed by = 0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths
from s to all other vertices in time proportional to E + V.

) (4]
o —h o*e

graph G dist=0 dist=1 dist = 2
106

Breadth-first search application: routing

Fewest number of hops in a communication network.

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES.

ARPANET, July 1977

Breadth-first search application: Kevin Bacon numbers

ann The Oracleof facon.

THE ORACLE

OoF BACON

Buzz Mauro
‘Sweet Dreams (2005) |

Tatiana Ramirez

Interior de un silencio, 1 (2005)
- Uma Thurman

Andres Suarez Be Cool (2005)
Carlta's Secret (2004) |

Paula Lemes (1) 2

FrostNixon (2008)

Kevin Bacon

http:/ /oracleofbacon.org SixDegreesiiEhonelapp)

108

Kevin Bacon graph

« Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
« Compute shortest path from s = Kevin Bacon.

109

4.1 UNDIRECTED GRAPHS

Algorithms

» challenges

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. Is a graph bipartite?

BRANNRO OOO
QU hWWoO BTN R

BRANNEO OOO
OUhRWWO VBTN R

Solution:
modify DFS so that each node is colored opposite of its parent
while iterating over adjacent nodes check color
if same color as current node: not bipartite!
if graph not connected: check if each component is bipartite

Graph-processing challenge 2

Problem. Find a cycle in a graph (if one exists).

Simple DFS-based solution (see textbook). o

0-5-4-6-0

oo T T T
OU AR WWO VN R

A B NNBEHOOOO

12

Graph-processing challenge 3 Graph-processing challenge 4

Problem. Find a cycle that uses every edge exactly once (if one exists). Problem. Is there a cycle that contains every vertex exactly once?

0-1
0-2
0-5
0-6 “Hamiltonian circuit” problem.
c 1-2
2-3
a o 2-4 Famously NP-complete.
3-4
3 4-5
4-6

0-1-2-3-4-2-0-6-4-5-0

0-5-3-4-6-2-1-0

Bridges of Koenigsberg problem. Famously solved by Euler in 1736.
Cycle exists if and only if graph connected & each vertex has even degree

Finding Euler cycle (if it exists): another easy application of DFS.

BAWWNROOOO

oV uv AN UGN R

Graph-processing challenge 5 Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names? Problem. Can you draw a graph in the plane with no crossing edges?

try it yourself at http://planarity.net

“Graph isomorphism” problem. Linear-time but complicated DFS-based algorithm

(by Bob Tarjan) (3)
\ =
O

BRPOWOOO®
o VU A OUN R

Complexity is famously unresolved.
Not known to be solvable in polynomial time
nor known to be NP-complete.

VWO o
AR BNV A

0«4, 13, 2<2, 36, 4<5, 50, 6«1

R
o v A UVN R

A BwWwwoooo

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

v v E+V

s-t path
shortest s-t path
cycle
Euler cycle
Hamilton cycle
bipartiteness (odd cycle)
connected components
biconnected components
planarity

graph isomorphism

v

v

gevViogV

Exciting new theorem claimed in Nov 2015
Would improve this bound dramatically

Not yet verified and accepted by community

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.1 UNDIRECTED GRAPHS

» flioped lecture experiment

Next 4 lectures will be flipped

No class Wednesday 3/23

Before Monday 3/28:

Watch directed graphs and minimum spanning trees lectures
Guna will lead flipped session (usual time and place on 3/28)

No class Wednesday 3/30

Before Monday 4/4:

Watch shortest paths and maximum flow lectures

Arvind will lead flipped session (usual time and place on 4/4)

Regular lectures will resume Wednesday 4/6

119

