

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Protein-protein interaction network

[^0]
Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000 .

Map of science clickstreams

The evolution of FCC lobbying coalitions

10 million Facebook friends

facebook

Sexual network

Structure of romantic and sexual relations at "Jefferson High School"
Researchers Map The Sexual Network of An Entire High Schod

Terrorist networks

Relationships among individuals associated with the $\mathbf{2 0 0 4}$ Madrid bombings
Connecting the Dots: Can the tools of graph theory and social-network studies unravel the next big plot2 http://www.americanscientist.org/issues/pub/connecting-the-dots

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	person	friendship
neural network	neuron	synapse
protein network	protein	protein-protein interaction

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same
Two vertices are connected if there is a path between them.

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

4.1 Undirected Graphs

- introduction
- graph API
depthefirst search
- breadth-first search
- challenges

http://algs 4.cs.princeton.edu

Graph representation

Vertex representation.

- This lecture: use integers between 0 and $V-1$.
- Applications: convert between names and integers with symbol table.

Anomalies

Undirected graphs: quiz 1

Which is order of growth of running time of the following code fragment if the graph uses the adjacency-matrix representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.v(); v++)
    for (intw: G.adj(v))
    StdOut.println(v + "-" + w);
```


prints edges

A. V
B. $E+V$
C. V^{2}
D. $V E$
E. I don't know.

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

We use Bag objects because we don't care about the order in which we iterate over the adjacent vertices.

Undirected graphs: quiz 2

Which is order of growth of running time of the following code fragment if the graph uses the adjacency-lists representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.v(); v++)
    for (int w:G < C.vj(v)
    StdOut.println(v + "-" + w);
```

 prints edges
 A. $\quad V$
B. $E+V$
C. V^{2}
D. $V E$
E. I don't know.

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.
. $\begin{gathered}\text { huge number of vertices, } \\ \text { small average vertex degree }\end{gathered}$

representation	space	add edge	edge between v and $w ?$	iterate over vertices adjacent to v ?
list of edges	E	1	E	E
adjacency matrix	V^{2}	1	1	V
adjacency lists	$E+V$	1	degree(v)	degree(v)

Homework. Design a representation that improves degree(v) bound for checking if edge exists, and is as good as adjacency lists for all other ops

Adjacency-list graph representation: Java implementation

Maze exploration

Maze graph.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze

Maze exploration: National Building Museum

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each newly discovered intersection and passage.
- Retrace steps when no unmarked options.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each newly discovered intersection and passage.
- Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with electromechanical mouse)
htpp://www.corpatt.com/attlabs/reputation/timeline/16shannon.html $\quad 30$

Maze exploration

Maze exploration: challenge for the bored

Depth-first search

Goal. Systematically traverse a graph.
Idea. Mimic maze exploration. \longleftarrow function-call stack acts as ball of string

DFS (to visit a vertex v)

```
Mark vertex v.
Recursively visit all unmarked
vertices w adjacent to v.
```

Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Undirected graphs: quiz 3

DFS of a tree (starting at the root) corresponds to which traversal?
A. In-order
B. Pre-order
DFS (to visit a vertex v)
C. Post-order
D. Level-order

Mark vertex v .

Recursively visit all unmarked vertices w adjacent to v.
E. I don't know.

Trick question! DFS doesn't care about order of visiting adjacent nodes.

May correspond to pre-order or to none of the orders.

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

$$
\begin{aligned}
& 53
\end{aligned}
$$

Depth-first search demo

To visit a vertex v

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

		marked[]
edgeTo[]		
0	F	-
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

graph G

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[]	edgeToll
0	T	-
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 0 : check 6 , check 5 , check 2 , check 1 , done
\uparrow

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 6: check 0 , check 4 , done
visit 6 : check 0 , check 4,

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

\checkmark	marked[]	edgeTol]
0	T	-
1	F	-
2	F	-
3	F	-
4	(${ }^{\text {(}}$	(6)
5	F	
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 4: check 5 , check 6 , check 3 , done
$\stackrel{\uparrow}{4}$

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

\mathbf{v}	marked[]	edgeTol]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 3: check 5, check 4, done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 3: check 5, check 4, done
visit 3 : check 5, check 4,

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

\mathbf{v}	marked[l]	edgeTo[]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 3: check 5, check 4, done
$\uparrow \uparrow$

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 5 : check 3 , check 4 , check 0 , done
\uparrow

v	marked[]	edgeTol]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

12

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[]	edgeTo[]
0	T	-
,	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 5: check 3, check 4, check $\mathbf{0}$, done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 5 : check 3 , check 4 , check 0 , done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[l]	edgeTol]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 4: check 5, check 6, check 3, done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 6: check 0 , check 4 , done
visit 4: check 5 , check 6 , check 3 , don

\checkmark	marked[]	edgeTo[]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

\uparrow

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[]	edgeTo[]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 0 : check 6 , check 5 , check 2 , check 1 , done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[]	edgeTol]
0	T	-
1	F	-
2	F	-
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 0 : check 6 , check 5 , check 2 , check 1 , done

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

\mathbf{v}	marked[]	edgeTol]
0	T	-
1	F	-
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

visit 2: check $\mathbf{0}$, done
\uparrow

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

visit 1 : check 0 , done
\uparrow

\mathbf{v}	marked[]	edgeTol]
0	T	-
1	T	0
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.
-

visit 0 : check 6 , check 5 , check 2 , check 1 , done

v	marked[]	edgeTol]
0	T	-
1	T	0
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v

v	marked[]	edgeTol]
0	T	-
1	T	0
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

vertices reachable from 0

Modularity

As usual, client doesn't care about implementation details, including data structures used

Paths paths = new Paths(G, s);
for (int $v=0 ; v<G . V() ; v++$)
if (paths.hasPathTo(v)) StdOut.println(v); print all vertices
connected to s

Depth-first search: data structures

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Data structures.

- Boolean array marked[] to mark vertices.
- Integer array edgeTo[] to keep track of paths
(edgeTo $[w]==v$) means that edge $v-w$ taken to discover vertex w
- Function-call stack for recursion.

Depth-first search: Java implementation

private boolean[] marked; private int[] edgeTo; private int s;	if v connected to s edgeTo [v$]=$ previous vertex on path from s to v
```public DepthFirstPaths(Graph G, int s) { # dfs(G, s); }```	initialize data structures   find vertices connected to $s$
```private void dfs(Graph G, int v) { marked[v] = true; for (int w: G.adj(v)) if (!marked[w]) { edgeTo[w] = v; dfs(G, w); } }```	recursive DFS does the work
\}	

Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time and can find $v-s$ path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s .

```
public boolean hasPathTo(int v)
    return marked[v]; }
    public Iterable<Integer> pathTo(int v)
        if (!hasPathTo(v)) return nul1;
        Stack<Integer> path = new Stack<Integer>();
        or (int x = v; x!= s; x = edgeTo[x])
        path.push(x)
        push(s)
    return path
}
}
```


Pf. [running time]
Each vertex connected to s is visited once

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

graph G

Breadth-first search

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

BFS (from source vertex s)
Enqueue s, mark s as visited
While queue is not empty:

- dequeue v
enqueue each of v's unmarked neighbors,
and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

$$
\begin{array}{ll}
\text { tinycG.txt } \\
V & \\
\hline & \\
8 & - \\
0 & 5 \\
2 & 4 \\
2 & 4 \\
1 & 3 \\
1 & 2 \\
0 & 1 \\
3 & 1 \\
3 & 4 \\
0 & 5 \\
0 & 2
\end{array}
$$

graph G

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them

queue $\quad v$ edgetol] distTo[]

add 0 to queue

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue $\quad v$ edgeToll distToll

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue \quad| | | | |
| :--- | :--- | :--- | :--- |
| | v | edgeto[] distTol] | |
| 0 | - | 0 | |

ueue

dequeue 0

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue

2
dequeue 0

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

		edgetoll	
	0	-	0
	1	0	1
	2	0	1
	3	-	-
5	4	-	-
1	5	0	1

0 done

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

\[

\]

dequeue 2

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

5
dequeue 2

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them

queue

5
1
dequeue 2

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

2 done

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

\[

\]

dequeue 1

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

$$
\begin{array}{cccc}
\text { queue } & \mathbf{v} & \text { vedgeToll distTol] } \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
& 3 & 2 & 2 \\
4 & 4 & 2 & 2 \\
& 5 & 0 & 1 \\
3 & & & \\
\hline 5 & & &
\end{array}
$$

dequeue 1

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue	v		edgeToll
	0	distTol]	
	1	-	0
	2	0	1
	3	2	2
4	4	2	2
	3	5	0

1 done

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeto[] distTol]
$\begin{array}{lll}0 & - & 0 \\ 1 & 0 & 1\end{array}$
3
4

5
dequeue 5

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue	v		
	edgeTol]	distTol $]$	
	0	-	0
	1	0	1
	2	0	1
	3	2	2
	4	2	2
	5	0	1

3
dequeue 5

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.
- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

\[

\]

dequeue 5

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue
$\checkmark \mathrm{v}$ edgeTol] distTol]

4
3
dequeue 3

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeto[] distTol]
- $\begin{array}{lll}1 & - & 0\end{array}$
$\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 2 \\ 4 & 2 \\ 5 & 0\end{array}$

4
queue

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue

4

3 done

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

queue $\quad v$ edgetoll distTol

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue
- Add to queue all unmarked vertices adjacent to v and mark them.

queue

4 done

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

\mathbf{v}	edgeToll	distTol
0	-	0
1	0	1
2	0	1
3	2	2
4	2	2
5	0	1

Q. Draw another possible BFS tree of the same graph (also starting from 0)
A. Only one other BFS tree possible: replace $2 \rightarrow 3$ edge with $5 \rightarrow 3$ edge

Breadth-first search: Java implementation

```
public class BreadthFirstPaths
    private boolean[] marked;
    private int[] edgeTo
```

 private void bfs(Graph G, int s) \{
 Queue \(<\) Integer> \(\mathrm{q}=\) new Queue \(<\) Integer \(>(\)) ;
 q. enqueue(s);
 marked[s] \(=\) true
 distTo
ds]
while (!q.isempty ()) $\begin{gathered}\text { int } v=\text { q. dequeue } \\ \text {) }\end{gathered}$
for (int w: G.adj(v))
if (! marked [w]) \{
q. enqueue (w) :
marked $[w]=$ true
distTo $[\mathrm{w}]=\operatorname{distTo}[\mathrm{v}]+1$;
$3^{\}}$
\}
$\}^{\}}$
3

Breadth-first search application: routing

Fewest number of hops in a communication network.

Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s.
,

$$
\begin{aligned}
& \text { queue always consists of } \geq 0 \text { vertices of distance } k \text { from } s \text {, } \\
& \text { followed by } \geq 0 \text { vertices of distance } k+1
\end{aligned}
$$

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to $E+V$.

graph G

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon graph

- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from $s=$ Kevin Bacon.

Graph-processing challenge 1

Problem. Is a graph bipartite?

Solution:

modify DFS so that each node is colored opposite of its parent while iterating over adjacent nodes check color
if same color as current node: not bipartite! if graph not connected: check if each component is bipartite

Graph-processing challenge 2

Problem. Find a cycle in a graph (if one exists).

Simple DFS-based solution (see textbook).

$0-1$
$0-2$
$0-5$
$0-6$
$1-3$
$2-3$
$2-4$
$4-5$
$4-6$
0-5-4-6-0

Graph-processing challenge 3

Problem. Find a cycle that uses every edge exactly once (if one exists).

Bridges of Koenigsberg problem. Famously solved by Euler in 1736. Cycle exists if and only if graph connected \& each vertex has even degree

Finding Euler cycle (if it exists): another easy application of DFS.

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?
"Graph isomorphism" problem.

Complexity is famously unresolved.

Not known to be solvable in polynomial time nor known to be NP-complete.

$0 \leftrightarrow 4,1 \leftrightarrow 3,2 \leftrightarrow 2,3 \leftrightarrow 6,4 \leftrightarrow 5,5 \leftrightarrow 0,6 \leftrightarrow 1$

Graph-processing challenge 4

Problem. Is there a cycle that contains every vertex exactly once?
"Hamiltonian circuit" problem.
Famously NP-complete.

$$
0-5-3-4-6-2-1-0
$$

Graph-processing challenge 6

Problem. Can you draw a graph in the plane with no crossing edges?
try it yourself at http://planarity.net

Linear-time but complicated DFS-based algorithm (by Bob Tarjan)

$0-1$
$0-2$
$0-5$
$0-6$
$3-4$
$3-5$
$4-5$
$4-6$

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems

graph problem	BFS	DFS	time
s-t path	\checkmark	\checkmark	$E+V$
shortest s-t path	\checkmark		$E+V$
cycle	\checkmark	\checkmark	$E+V$
Euler cycle		\checkmark	$E+V$
Hamilton cycle			$2^{1.657 V}$
bipartiteness (odd cycle)	\checkmark	\checkmark	$E+V$
connected components	\checkmark	\checkmark	$E+V$
biconnected components		\checkmark	$E+V$
planarity		\checkmark	$E+V$
graph isomorphism			$2^{c \sqrt{V} \log V}$

Next 4 lectures will be flipped

No class Wednesday 3/23

Before Monday 3/28:
Watch directed graphs and minimum spanning trees lectures
Guna will lead flipped session (usual time and place on 3/28)

No class Wednesday 3/30

Before Monday 4/4:
Watch shortest paths and maximum flow lectures
Arvind will lead flipped session (usual time and place on 4/4

Regular lectures will resume Wednesday 4/6

[^0]: eeference: Jeong et al, Nature Review | Genetics

