
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/10/16 1:40 PM

2.1 ELEMENTARY SORTS

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2

IBM sorting machine (1949).

Which sense of the word sort do you think this refers to?
http://www.columbia.edu/cu/computinghistory/sorter.html

Bogosort

3

while (!array.isSorted())
 array.permute_randomly();

Announcement

Starting Monday, we’ll use iClicker responses as a proxy for attendance

4

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2.1 ELEMENTARY SORTS

Ex. Student records in a university.

Sort. Rearrange array of N items in ascending order by key.

6

Sorting problem

item

key

Chen 3 A (991) 878-4944 308 Blair

Rohde 2 A (232) 343-5555 343 Forbes

Gazsi 4 B (800) 867-5309 101 Brown

Furia 1 A (766) 093-9873 101 Brown

Kanaga 3 B (898) 122-9643 22 Brown

Andrews 3 A (664) 480-0023 097 Little

Battle 4 C (874) 088-1212 121 Whitman

Andrews 3 A (664) 480-0023 097 Little

Battle 4 C (874) 088-1212 121 Whitman

Chen 3 A (991) 878-4944 308 Blair

Furia 1 A (766) 093-9873 101 Brown

Gazsi 4 B (800) 867-5309 101 Brown

Kanaga 3 B (898) 122-9643 22 Brown

Rohde 2 A (232) 343-5555 343 Forbes

Sorting arrays vs. linked lists

We’ll be exclusively concerned with sorting arrays.

Q. Why not study how to sort linked lists?

A.

・Most data we’ll want to sort will be in an array anyway.

・If it isn’t, fastest way is to convert to array, sort, convert back.

 

・Linked lists are typically used for dynamic data.

・Sorting makes sense only for static data.

・But what if we have values coming in dynamically and we want to keep

the list sorted at all times?

7

second half of the course

Goal. Sort any type of data (for which sorting is well defined).

Ex 1. Sort random real numbers in ascending order.

Ex 2. Sort strings in alphabetical order.

Ex 3. Sort the files in a given directory by filename.

Requirement: total order

・Any two items v, w satisfy v < w or v = w or v > w

・There is no cycle of < relationships

8

Prerequisites

violates condition 2

COS 126

COS 226 COS 217

COS 423 COS 333

violates condition 1

A total order is a binary relation ≤ that satisfies:

・Antisymmetry: if both v ≤ w and w ≤ v, then v = w.

・Transitivity: if both v ≤ w and w ≤ x, then v ≤ x.

・Totality: either v ≤ w or w ≤ v or both.

Ex.

・Standard order for natural and real numbers.

・Chronological order for dates or times.

・Lexicographic order for strings.

 
 
Not transitive. Ro-sham-bo.

Not total. PU course prerequisites.

9

Total order: more math-y version

Goal. Sort any type of data (for which sorting is well defined).

Helper functions. Refer to data only through compares and exchanges.  
 
Less (magical for now). Is item v less than w ? 
 
 
 
 
Exchange. Swap item in array a[] at index i with the one at index j.

10

Modularity and abstraction

private static boolean less(Object v, Object w)
{ … }

private static void exch(Object[] a, int i, int j)
{
 Object swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2.1 ELEMENTARY SORTS

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

12

initial

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

initial

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

i min

remaining entries

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

i min

remaining entries

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

sorted

43

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

・Entries the left of ↑ (including ↑) fixed and in ascending order.

・No entry to right of ↑ is smaller than any entry to the left of ↑.

in final order ↑

44

Selection sort inner loop

To maintain algorithm invariants: 

・Move the pointer to the right.  
 
 

・Identify index of minimum entry on right. 
 
 
 
 
 

・Exchange into position.

i++;

↑in final order

in final order

exch(a, i, min);
↑↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑in final order

45

Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;  
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* see Comparators section */ }

 private static void exch(Object[] a, int i, int j)
 { /* see earlier slide */ }
}

http://algs4.cs.princeton.edu/21elementary/Selection.java.html

Selection sort: animations

46

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Selection sort: animations

47

in final order

not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

Elementary sorts: quiz 1

How many compares does selection sort make to sort an array of N keys?

A. ~ N

B. ~ 1/4 N 2

C. ~ 1/2 N 2

D. ~ N 2

E. I don't know.

48

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares

and N exchanges to sort any array of N items.

Running time insensitive to input. Quadratic time, even if input is sorted.

Data movement is minimal. Linear number of exchanges—exactly N.

49

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2.1 ELEMENTARY SORTS

Insertion sort demo

51

・In iteration i, swap a[i] with each larger entry to its left.

https://www.youtube.com/watch?v=ROalU379l3U

Algorithm. ↑ scans from left to right.

Invariants.

・Entries to the left of ↑ (including ↑) are in ascending order.

・Entries to the right of ↑ have not yet been seen.

52

Insertion sort

in order ↑ not yet seen

53

Insertion sort: inner loop

To maintain algorithm invariants:

・Move the pointer to the right.

・Moving from right to left, exchange 
a[i] with each larger entry to its left.

i++;

in order not yet seen
↑

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

in order not yet seen
↑↑↑↑

Insertion sort: Java implementation

54

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Object[] a, int i, int j)
 { /* as before */ }
}

http://algs4.cs.princeton.edu/21elementary/Insertion.java.html

Insertion sort: animation

55

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Proposition. To sort a randomly-ordered array with distinct keys,  
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

 
Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

56

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Elementary sorts: quiz 2

How many compares does insertion sort make to sort an array of N distinct

keys in reverse order?

A. ~ N

B. ~ 1/4 N 2

C. ~ 1/2 N 2

D. ~ N 2

E. I don't know.

57

Insertion sort: animation

58

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order

not yet seen

algorithm position

Worst case. If the array is in descending order (and no duplicates),  
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

 
 
 
 
 
Best case. If the array is in ascending order, insertion sort makes  
N – 1 compares and 0 exchanges.

Insertion sort: analysis

59

 X T S R P O M L F E A

 A E E L M O P R S T X

Insertion sort: animation

60

40 partially-sorted items

http://www.sorting-algorithms.com/insertion-sort

in order

not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

 
 
 
 
 
 
Def. An array is partially sorted if the number of inversions is ≤ c N.

・Ex 1. A sorted array has 0 inversions.

・Ex 2. A subarray of size 10 appended to a sorted subarray of size N.

 
 
Proposition. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

61

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares ≤ exchanges + (N – 1)

Half exchanges. Shift items over (instead of exchanging).

・Eliminates unnecessary data movement.

・No longer uses only less() and exch() to access data.

 
 
 
 
 
 
Binary insertion sort. Use binary search to find insertion point.

・Number of compares ~ N lg N .

・But still a quadratic number of array accesses.

Insertion sort: practical improvements

62

 A C H H I M N N P Q X Y K B I N A R Y

binary search for first key > K

 A C H H I B I N A R YKM N N P Q X Y

Elementary sorts: quiz 3

Which is faster in practice, selection sort or insertion sort?

A. Selection sort.

B. Insertion sort.

C. No significant difference.

D. I don't know.

Also faster in theory if our cost model incorporates the assumption that
comparing two objects is almost always slower than swapping two pointers.

63

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2.1 ELEMENTARY SORTS

65

Callbacks

Goal. Sort any type of data (for which sorting is well defined).

Q. How can sort() compare data of type Double, String, java.io.File, or

user-defined type without hardwiring in type-specific information?

A. Client object must implement an interface (comparable).

・Client passes array of objects to sort() function.

・The sort() function calls object's compareTo() method as needed.

This is a callback. Client calls sort() and sort() calls client code back.

Interfaces and callbacks: iterable vs comparable

66

Program

Libraries

API

Stack

push pop iterator hasNext next

ListIterator

Program

Libraries

API

Arrays

sort …

…

Student

compareTo

 add drop …

public class String
implements Comparable<String>

{
 ...

 public int compareTo(String that)
 {
 ...
 }
}

data type implementation (String.java)

Comparable interface: overview

67

client (StringSorter.java)

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAllStrings();
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

sort implementation (Insertion.java)

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

java.lang.Comparable interface

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

key point: no dependence 
on type of data to be sorted

callback

Elementary sorts: quiz 1

Suppose that the Java architects leave out implements Comparable<String>  
in the class declaration for String. What would be the effect?

A. String.java won't compile.

B. StringSorter.java won't compile.

C. Insertion.java won't compile.

D. Insertion.java will throw a run-time exception.

E. I don't know.

68

Implement compareTo() so that v.compareTo(w)

・Defines a total order.

・Returns a negative integer, zero, or positive integer if v is less than,

equal to, or greater than w, respectively.

・Throws an exception if incompatible types (or either is null).

 
 
 
 
 
 
 
 
 
Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.

69

java.lang.Comparable API

greater than
(return positive integer)

v

w

less than
(return negative integer)

v
w

equal to
(return 0)

v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date> 
{
 private final int month, day, year;

 public Date(int m, int d, int y) 
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that) 
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

70

Implementing the Comparable interface: example

can compare Date objects 
only to other Date objects

http://algs4.cs.princeton.edu/12oop/Date.java.html

71

Review: Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;  
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Object[] a, int i, int j)
 { /* as before */ }
}

http://algs4.cs.princeton.edu/21elementary/Selection.java.html

72

Generic methods

Oops. The compiler complains. 
 
 
 
 
 
 
 
 
 
 
 

Q. How to silence the compiler?

 % javac Selection.java
 Note: Selection.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 % javac -Xlint:unchecked Selection.java
 Selection.java:83: warning: [unchecked] unchecked call to
compareTo(T) as a member of the raw type java.lang.Comparable
 return (v.compareTo(w) < 0);
 ^
1 warning

73

Generic methods

Pedantic (type-safe) version. Compiles without any warnings.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Use type-safe version in system code (but not in lecture).

public class SelectionPedantic
{
 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static Object void exch(Object[] a, int i, int j)
 { /* as before */ }
}

generic type variable 
(type inferred from argument; must be Comparable)

http://algs4.cs.princeton.edu/21elementary/SelectionPedantic.java.html

74

Sort music library by artist

75

Sort music library by song name

Comparable interface: sort using a type's natural order.

76

Comparable interface: review

public class Date implements Comparable<Date> 
{
 private final int month, day, year;

 public Date(int m, int d, int y) 
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that) 
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

Comparator interface: sort using an alternate order.

 
 
 
 
 
 
Required property. Must be a total order.

77

Comparator interface

string order example

natural order Now is the time

case insensitive is Now the time

Spanish language café cafetero cuarto churro nube ñoño

British phone book McKinley Mackintosh

pre-1994 order for

digraphs ch and ll and rr

public interface Comparator<Item>
{
 public int compare(Item v, Item w);
}

78

Comparator interface: system sort

To use with Java system sort:

・Create Comparator object.

・Pass as second argument to Arrays.sort().

 
 
 
 
 
 
 
 
 
 
 
Bottom line. Decouples the definition of the data type from the 
definition of what it means to compare two objects of that type.

String[] a;
...
Arrays.sort(a);
...
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
...
Arrays.sort(a, Collator.getInstance(new Locale("es")));
...
Arrays.sort(a, new BritishPhoneBookOrder());
...

uses alternate order defined by
Comparator<String> object

uses natural order

79

Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

・Pass Comparator to both sort() and less(), and use it in less().

・Use Object instead of Comparable.

import java.util.Comparator;

public class Insertion
{
 ...

 public static void sort(Object[] a, Comparator comparator)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }

 private static boolean less(Comparator comparator, Object v, Object w)
 { return comparator.compare(v, w) < 0; }
}

http://algs4.cs.princeton.edu/21elementary/Insertion.java.html
http://algs4.cs.princeton.edu/21elementary/InsertionPedantic.java.html

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

・Provide client access to Comparator.

import java.util.Comparator;

public class Student
{
 private final String name;
 private final int section;
 ...

 public static Comparator<Student> nameOrder()
 { return new NameOrder(); }

 private static class NameOrder implements Comparator<Student>
 {
 public int compare(Student v, Student w)
 { return v.name.compareTo(w.name); }
 }
 ...
}

80

Comparator interface: implementing

one Comparator for the class

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

・Provide client access to Comparator.

import java.util.Comparator;

public class Student
{
 private final String name;
 private final int section;
 ...

 public static Comparator<Student> sectionOrder()
 { return new SectionOrder(); }

 private static class SectionOrder implements Comparator<Student>
 {
 public int compare(Student v, Student w)
 { return v.section - w.section; }
 }
 ...
}

81

Comparator interface: implementing

this trick works here
since no danger of overflow

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

・Provide client access to Comparator.

Andrews 3 A (664) 480-0023 097 Little

Battle 4 C (874) 088-1212 121 Whitman

Chen 3 A (991) 878-4944 308 Blair

Fox 3 A (884) 232-5341 11 Dickinson

Furia 1 A (766) 093-9873 101 Brown

Gazsi 4 B (800) 867-5309 101 Brown

Kanaga 3 B (898) 122-9643 22 Brown

Rohde 2 A (232) 343-5555 343 Forbes

82

Comparator interface: implementing

Insertion.sort(a, Student.nameOrder()); Insertion.sort(a, Student.sectionOrder());

Furia 1 A (766) 093-9873 101 Brown

Rohde 2 A (232) 343-5555 343 Forbes

Andrews 3 A (664) 480-0023 097 Little

Chen 3 A (991) 878-4944 308 Blair

Fox 3 A (884) 232-5341 11 Dickinson

Kanaga 3 B (898) 122-9643 22 Brown

Battle 4 C (874) 088-1212 121 Whitman

Gazsi 4 B (800) 867-5309 101 Brown

83

Stability

A typical application. First, sort by name; then sort by section.

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Selection.sort(a, Student.nameOrder());

Andrews 3 A (664) 480-0023 097 Little

Battle 4 C (874) 088-1212 121 Whitman

Chen 3 A (991) 878-4944 308 Blair

Fox 3 A (884) 232-5341 11 Dickinson

Furia 1 A (766) 093-9873 101 Brown

Gazsi 4 B (800) 867-5309 101 Brown

Kanaga 3 B (898) 122-9643 22 Brown

Rohde 2 A (232) 343-5555 343 Forbes

Selection.sort(a, Student.sectionOrder());

Furia 1 A (766) 093-9873 101 Brown

Rohde 2 A (232) 343-5555 343 Forbes

Chen 3 A (991) 878-4944 308 Blair

Fox 3 A (884) 232-5341 11 Dickinson

Andrews 3 A (664) 480-0023 097 Little

Kanaga 3 B (898) 122-9643 22 Brown

Gazsi 4 B (800) 867-5309 101 Brown

Battle 4 C (874) 088-1212 121 Whitman

Which sorting algorithms are stable?

A. Selection sort.

B. Insertion sort.

C. Both A and B.

D. Neither A nor B.

E. I don't know.

84

Elementary sorts: quiz 4

85

Stability: insertion sort

Proposition. Insertion sort is stable.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pf. Equal items never move past each other.

public class Insertion  
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Proposition. Selection sort is not stable.

 
 
 
 
 
 
 
 
 
 
 
 
 
Pf by counterexample. Long-distance exchange can move one equal item  
past another one.

86

Stability: selection sort

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;  
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ comparators

‣ shuffling

2.1 ELEMENTARY SORTS

Goal. Rearrange array so that result is a uniformly random permutation.

Interview question: shuffle an array

88

all N! permutations

equally likely

Goal. Rearrange array so that result is a uniformly random permutation.

Interview question: shuffle an array

89

all N! permutations

equally likely

・Generate a random real number for each array entry.

・Sort the array.

Shuffling by sorting

90

0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706

・Generate a random real number for each array entry.

・Sort the array.

Shuffling by sorting

91

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

Microsoft antitrust probe by EU. Microsoft agreed to provide a

randomized ballot screen for users to select browser in Windows 7.

92

War story (Microsoft)

http://www.browserchoice.eu

appeared last

50% of the time

Microsoft antitrust probe by EU. Microsoft agreed to provide a

randomized ballot screen for users to select browser in Windows 7.

Solution? Implement shuffling-by-sorting by making comparator always  
return a random answer.

93

War story (Microsoft)

 function RandomSort (a,b)
 {
 return (0.5 - Math.random());
 }

Microsoft's implementation in Javascript public int compareTo(Browser that)
 {
 double r = Math.random();
 if (r < 0.5) return -1;
 if (r > 0.5) return +1;
 return 0;
 }

browser comparator

(should implement a total order)

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a

uniformly random permutation of the input array in linear time.

Knuth shuffle

94

assuming integers
uniformly at random

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a

uniformly random permutation of the input array in linear time.

Knuth shuffle

95

common bug: between 0 and N – 1

Texas hold'em poker. Software must shuffle electronic cards.

War story (online poker)

96

How We Learned to Cheat at Online Poker: A Study in Software Security

http://www.cigital.com/papers/download/developer_gambling.php

Bug 1. Random number r never 52 ⇒ 52nd card can't end up in 52nd place.

Bug 2. Shuffle not uniform (should be between 1 and i).

Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles.

Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million shuffles.

 
 
Exploit. After seeing 5 cards and synchronizing with server clock,  
can determine all future cards in real time.

War story (online poker)

97

Shuffling algorithm in FAQ at www.planetpoker.com

“ The generation of random numbers is too important to be left to chance. ”

 — Robert R. Coveyou

 for i := 1 to 52 do begin
 r := random(51) + 1;
 swap := card[r];
 card[r] := card[i];
 card[i] := swap;
 end;

between 1 and 51

Best practices for shuffling (if your business depends on it).

・Use a hardware random-number generator that has passed both 
the FIPS 140-2 and the NIST statistical test suites.

・Continuously monitor statistic properties: 
hardware random-number generators are fragile and fail silently.

・Use an unbiased shuffling algorithm.

Bottom line. Shuffling a deck of cards is hard!

War story (online poker)

98

