
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/3/16 9:16 AM

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

2

Running time

how many times
do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future  
 course of the science. Whenever any result is sought by its aid, the question  
 will then arise—By what course of calculation can these results be arrived  
 at by the machine in the shortest time? ” — Charles Babbage (1864)

Running time

Concerns about running time preceded actual working computers

by almost a century!

3

One of the early achievements of computer science

The ability to estimate and bound the running time of a piece of code

as a function of the size of the input

without seeing the actual input data

and only minimal knowledge of the system it will run on

4

5

Required device for lecture.

・Use default frequency AA.

・Available at Labyrinth Books ($25).

・You must register your i▸clicker in Blackboard.

 (sorry, insufficient WiFi in this room to support i▸clicker GO)

 
 
Which model of i▸clicker are you using?

A. i▸clicker.

B. i▸clicker+.

C. i▸clicker 2.

D. All of the above

E. I am a conscientious objector

F. I feel constrained by the limited choices in this poll

Is this just a plot to get you to buy more devices?
Let’s find out!

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

Predict performance.

 
Compare algorithms.

 
Provide guarantees.

 
Understand theoretical basis.

 
 
Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

7

client gets poor performance because programmer 
did not understand performance characteristics

this course
(COS 226)

theory of algorithms
(COS 423)

8

Efficient algorithms enable new discoveries

n-body simulation.

・Simulate gravitational interactions among n bodies.

・Applications: cosmology, fluid dynamics, semiconductors, ...

・Brute force: n 2 steps.

・Barnes-Hut algorithm: n log n steps, enables new research.

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

Andrew Appel  
PU '81

9

Efficient algorithms enable new products

Discrete Fourier transform.

・Express signal as weighted sum of sines and cosines.

・Applications: DVD, JPEG, MRI, astrophysics, ….

・Brute force: n 2 steps.

・FFT algorithm: n log n steps, enables new technology.

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

John
Tukey

James
Cooley

10

Scientific method applied to the analysis of algorithms

A framework for predicting performance and comparing algorithms.

 
Scientific method.

・Observe some feature of the natural world.

・Hypothesize a model that is consistent with the observations.

・Predict events using the hypothesis.

・Verify the predictions by making further observations.

・Validate by repeating until the hypothesis and observations agree.

 
 
Principles.

・Experiments must be reproducible.

・Hypotheses must be falsifiable.

 
 
Feature of the natural world. Computer itself.

Francis
Bacon

René
Descartes

John Stuart
Mills

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

12

Example: 3-SUM

3-SUM. Given n distinct integers, how many triples sum to exactly zero?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Context. Deeply related to problems in computational geometry.

Input:

30 -40 -20 -10 40 0 10 5

Output:

4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4

 public static int count(int[] a)
 {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

13

3-SUM: brute-force algorithm

check each triple

Ignore integer overflow in computing a[i] + a[j] + a[k]

Q. How to time a program?

A. Manual.

14

Measuring the running time

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?

A. Automatic.

15

Measuring the running time

client code

public static void main(String[] args)
{
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
 StdOut.println("elapsed time = " + time);
}

 public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

(part of stdlib.jar)

Run the program for various input sizes and measure running time.

16

Empirical analysis

Run the program for various input sizes and measure running time.

17

Empirical analysis

n time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

† on a 2.8GHz Intel PU-226 with 64GB 
 DDR E3 memory and 32MB L3 cache; 
 running Oracle Java 1.7.0_45-b18 on
 Springdale Linux v. 6.5

(not consistent with prev. slide)

Standard plot. Plot running time T (n) vs. input size n.

18

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log-log plot. Plot running time T (n) vs. input size n using log-log scale.

19

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

T (n) = a n b
lg(T (n)) = b lg n + lg(a)

Slope = b
y-intercept = lg(a)

Hypothesis. The running time is

~ 1.006 × 10 –10 × n 2.999 seconds.

lg = base 2 logarithm

20

Prediction and validation

Hypothesis. The running time is about 1.006 × 10 –10 × n 2.999 seconds.

 
 
Predictions.

・51.0 seconds for n = 8,000.

・408.1 seconds for n = 16,000.

 
 
Observations.

validates hypothesis!

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

16,000 410.8

"order of growth" of running 
time is about n3 [stay tuned]

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about a n b with b = lg ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

21

Doubling hypothesis

n time (seconds) † ratio lg ratio

250 0 –

500 0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8 3

8,000 51.1 8 3

seems to converge to a constant b ≈ 3

lg (6.4 / 0.8) = 3.0

T (N)

T (N/2)
=

aN b

a(N/2)b

= 2b

22

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

 
Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

 
 
 
 
 
 
 
 
 
Hypothesis. Running time is about 0.998 × 10 –10 × n 3 seconds.

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

51.1 = a × 80003

⇒ a = 0.998 × 10 –10

almost identical hypothesis
to one obtained via log-log plot

Analysis of algorithms quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds.

B. 52 seconds.

C. 117 seconds.

D. 350 seconds.

E. I don't know.

23

n time (seconds) †

1000 0.02

2000 0.05

4,000 0.2

8,000 0.81

16,000 3.25

32,000 13

24

Two surprises

Approximate running time is a simple mathematical expression

Generally holds true even for much more complex programs!

 
Running time on different systems differs only by a constant factor!

Running time on system 1: a1 n b

Running time on system 2: a2 n b

25

Experimental algorithmics

System independent effects.

・Algorithm.

・(Rarely) Input data.

 
System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

・Input data

determines constant a in
power law a n b

determines exponent b
in power law a n b

Theorist vs. pragmatist view of algorithmic efficiency

26

a n b property of algorithm

system-dependent

Theorist: Worrying about constant factors is tedious and crass!

 The asymptotic efficiency of an algorithm is a mathematical fact.

 I study properties of the universe. The computer is irrelevant!

Novice: My program ran in 3 seconds on my laptop when I fed it data.

 That’s pretty good, right?

Pragmatist: I will use math. model to compute b, then verify empirically.

 I will use a combination of math and observation to estimate a.

Bad news. Sometimes difficult to get precise measurements. 
Good news. Much easier and cheaper than other sciences.

27

An aside

Algorithmic experiments are virtually free by comparison with other sciences.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. No excuse for not running experiments to understand costs.

Physics
(1 experiment)

Chemistry
(1 experiment)

Computer Science
(1 million experiments)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

29

Mathematical models for running time

Total running time: sum of (cost × frequency) for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth 
1974 Turing Award

Challenge. How to estimate constants.

Cost of basic operations

30

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point multiply a * b 4.2

floating-point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129

...

Q. How many instructions as a function of input size n ?

31

Frequency of basic operations: Example: 1-SUM

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare n + 1

equal to compare n

array access n

increment n to 2 n

n array accesses

Cost model. Use some basic operation as a proxy for running time.

32

Simplification 1: cost model

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare n + 1

equal to compare n

array access n

increment n to 2 n

cost model = array accesses 

(we assume compiler/JVM do not
optimize any array accesses away!)

Heuristic: pick an operation that’s both

frequent and costly

Assumption:

Array access dominates running time

This is a hypothesis that can be tested

Memory access is a good candidate:

communicating outside CPU is often costly

・Estimate running time (or memory) as a function of input size n.

・Ignore lower order terms.
– when n is large, terms are negligible
– when n is small, we don't care

 
Ex 1. ⅙ n 3 + 20 n + 16 ~ ⅙ n 3

Ex 2. ⅙ n 3 + 100 n 4/3 + 56 ~ ⅙ n 3

Ex 3. ⅙ n 3 - ½ n 2 + ⅓ n ~ ⅙ n 3

 

 

 

 

 

 

Technical definition. f(n) ~ g(n) means

33

Simplification 2: tilde notation

€

lim
N→ ∞

 f (N)
g(N)

 = 1

discard lower-order terms 
(e.g., n = 1000: 166.67 million vs. 166.17 million)

Leading-term approximation

N 3/6

N 3/6 ! N 2/2 + N /3

166,167,000

1,000

166,666,667

N

Q. Approximately how many array accesses as a function of input size n ?

A. ~ n 2 array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

34

Example: 2-SUM

"inner loop"

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

Q. Approximately how many array accesses as a function of input size n ?

A. ~ ½ n 3 array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

35

Example: 3-SUM

�
N

3

⇥
=

N(N � 1)(N � 2)
3!

⇥ 1
6
N3

"inner loop"

36

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral, and use calculus!

 
 
Ex. 1 + 2 + … + n.
 
 

37

Estimating a discrete sum

N�

i=1

i �
⇥ N

x=1
x dx � 1

2
N2

N

N

Visual proof:

Area occupied by the sum

≈

Half the area of the square

38

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

[wayne:nobel.princeton.edu] > maple15
 |\^/| Maple 15 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2011
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.
> factor(sum(sum(sum(1, k=j+1..n), j = i+1..n), i = 1..n));

 n (n - 1) (n - 2)

 6

wolframalpha.com

Analysis of algorithms quiz 2

How many array accesses does the following code fragment make as a
function of n ?

 
 

A. ~ n 2 lg n

B. ~ 3/2 n 2 lg n

C. ~ 1/2 n 3

D. ~ 3/2 n 3

E. I don't know.

39

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k < n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

k = 1, 2, 4, …

lg n times

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

Definition. If f (n) ~ c g(n) for some constant c > 0, then the order of growth  
of f (n) is g(n).

・Ignores leading coefficient.

・Ignores lower-order terms.  

Ex. The order of growth of the running time of this code is n 3.
 
 
 
 
 
 
 
 
Typical usage. Mathematical analysis of running times.

Common order-of-growth classifications

41

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

where leading coefficient
depends on machine, compiler, JVM, ...

Good news. The set of functions 
 1, log n, n, n log n, n 2, n 3, and 2n

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

42

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K
ti

m
e

ti
m

e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Common order-of-growth classifications

43

order of
growth name typical code framework description example T(2n) / T(n)

1 constant a = b + c; statement
add two
numbers 1

log n logarithmic
while (n > 1) 

{ n = n/2; ... }
divide
in half

binary search ~ 1

n linear
for (int i = 0; i < n; i++)

 { ... }
single
loop

find the
maximum 2

n log n linearithmic see mergesort lecture
divide and
conquer

mergesort ~ 2

n 2 quadratic
for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)
 { ... }

double
loop

check all
pairs 4

n 3 cubic

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)

 for (int k = 0; k < n; k++)
 { ... }

triple
loop

check all
triples 8

2n exponential see combinatorial search lecture
exhaustive

search
check all
subsets

2 n

44

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid
return 4

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

unsuccessful search for 34

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

unsuccessful search for 34

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

unsuccessful search for 34

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid
return -1

unsuccessful search for 34

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

Cost model. key comparisons. [Why?]

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

53

Binary search: Java implementation

one "3-way

compare"

why not mid = (lo + hi) / 2 ?

54

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + lg n key compares to search in

a sorted array of size n.

 
Def. T (n) = # key compares to binary search a sorted subarray of size ≤ n.

 
Binary search recurrence. T (n) ≤ T (n / 2) + 1 for n > 1, with T (1) = 1.

 
 
Pf sketch. [assume n is a power of 2]

left or right half
(floored division)

possible to implement with one
2-way compare (instead of 3-way)

 T (n) ≤ T (n / 2) + 1 [given]

≤ T (n / 4) + 1 + 1 [apply recurrence to first term]

≤ T (n / 8) + 1 + 1 + 1 [apply recurrence to first term]

⋮

≤ T (n / n) + 1 + 1 + … + 1 [stop applying, T(1) = 1]

= 1 + lg n lg n

The 3-sum problem: an n2 log n algorithm

55

Algorithm.

・Step 1: Sort the n (distinct) numbers.

・Step 2: For each pair of numbers a[i] 
and a[j], binary search for -(a[i] + a[j]).

 
 
Analysis. Order of growth is n 2 log n.

・Step 1: n 2 with insertion sort 
 (or n log n with mergesort).

・Step 2: n 2 log n with binary search.

only count if
a[i] < a[j] < a[k]

to avoid
double counting

binary search
 (-40, -20) 60

 (-40, -10) 50

 (-40, 0) 40

 (-40, 5) 35

 (-40, 10) 30

 ⋮ ⋮

 (-20, -10) 30

 ⋮ ⋮

 (-10, 0) 10

 ⋮ ⋮

 (10, 30) -40

 (10, 40) -50

 (30, 40) -70

input
 30 -40 -20 -10 40 0 10 5

sort
 -40 -20 -10 0 5 10 30 40

Comparing programs

Hypothesis. The sorting-based n 2 log n algorithm for 3-SUM is significantly

faster in practice than the brute-force n 3 algorithm.

 
 
 
 
 
 
 
 
 
 
 
 
 
Guiding principle. Typically, better order of growth ⇒ faster in practice.

56

n time (seconds)

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

ThreeSum.java

n time (seconds)

1,000 0.14

2,000 0.18

4,000 0.34

8,000 0.96

16,000 3.67

32,000 14.88

64,000 59.16

ThreeSumDeluxe.java

Theorist vs. pragmatist view of algorithmic efficiency

57

a n b property of algorithm

system-dependent

Theorist: Worrying about constant factors is tedious and crass!

 The asymptotic efficiency of an algorithm is a mathematical fact.

 I study properties of the universe. The computer is irrelevant!

Pragmatist: I will use mathematical model to compute b, then verify empirically.

 I will use a combination of math and observation to estimate a.

 When I need to pick between algorithms,

 models provide a strong clue to practical performance.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣ mathematical models

‣ order-of-growth classifications

‣ memory

1.4 ANALYSIS OF ALGORITHMS

59

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 220 bytes (about 1 million).

Gigabyte (GB). 230 bytes (about 1 billion).

 
64-bit machine. We assume a 64-bit machine with 8-byte pointers.

some JVMs "compress" ordinary object
pointers to 4 bytes to avoid this cost

60

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

char[] 2n + 24

int[] 4n + 24

double[] 8n + 24

one-dimensional arrays

type bytes

char[][] ~ 2 m n

int[][] ~ 4 m n

double[][] ~ 8 m n

two-dimensional arrays

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

61

Typical memory usage for objects in Java

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable.

・Padding: round up to multiple of 8 bytes.

 
 
 
Note. Depending on application, we may want to count memory for any

referenced objects (recursively).

62

Typical memory usage summary

+ 8 extra bytes per inner class object
(for reference to enclosing class)

Analysis of algorithms quiz 3

How much memory does a WeightedQuickUnionUF use as a function of n ?  

A. ~ 4 n bytes

B. ~ 8 n bytes

C. ~ 4 n 2 bytes

D. ~ 8 n 2 bytes

E. I don't know.

63

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];
 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Analysis of algorithms quiz 3

How much memory does a WeightedQuickUnionUF use as a function of n ?

64

16 bytes
(object overhead)

4 bytes (int)

4 bytes (padding)

8n + 88 ~ 8n bytes

8 + (4n + 24) bytes each
(reference + int[] array)

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];
 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law.

・Formulate a hypothesis for running time.

・Model enables us to make predictions.

 
Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use tilde notation to simplify analysis.

・Model enables us to explain behavior.

 
Scientific method.

・Mathematical model is independent of a particular 
system; applies to machines not yet built.

・Empirical analysis is necessary to validate 
mathematical models and to make predictions.

65

⌊lgN⌋∑

h=0

⌈N/2h+1⌉ h ∼ N

Announcement

Unlike COS 126, you get only 10 checks in Dropbox per assignment

More announcements (re. exercises, etc.): see Piazza

66

