
 1

COS 435, Spring 2015 - Problem Set 4
Due at 1:30PM, Wednesday, April 1, 2015.

Collaboration and Reference Policy

You may discuss the general methods of solving the problems with other students in the
class. However, each student must work out the details and write up his or her own
solution to each problem independently. For each problem, list the students with whom
you discussed general methods of solving the problem (excluding very brief casual
conversations).

Some problems have been used in previous offerings of COS 435. You are NOT allowed
to use any solutions posted for previous offerings of COS 435 or any solutions produced
by anyone else for the assigned problems. You may use other reference materials; you
must give citations to all reference materials that you use.

Lateness Policy

A late penalty will be applied, unless there are extraordinary circumstances and/or prior
arrangements:

• Penalized 10% of the earned score if submitted by 11:59 pm Wed. (4/1/15).
• Penalized 25% of the earned score if submitted by 4:30pm Friday (4/6/15).
• Penalized 50% if submitted later than 4:30 pm Friday (4/3/15).

Problem 1 (similar to a 2011 exam 2 problem)

Recall that skip pointers can be used to speed up query evaluation by allowing the
algorithm that executes the intersection of postings lists for the different terms of the
query to skip sections of a postings list when then next document on one of the other
postings list has a much higher docID. This question asks you to estimate the savings in
space if the skip pointer representation is combined with the compressed representation
of docIDs using gaps.

Assume that a list containing L postings uses floor(sqrt(L))-1 skip pointers that are
approximately evenly spaced, starting at the first posting, so that each skip bridges about
sqrt(L) postings.

For a collection of one hundred billion documents, and postings that are pairs (DocID,
term frequency), let the representation of one posting in a postings list, using no
compression, be one of the following two forms:

 2

form of posting when there is a skip pointer:
| docID | | skip pointer | | term frequency |
 5 bytes 3 bytes 2 bytes

form when there is no skip pointer:
| doc ID | |term frequency |
 5 bytes 2 bytes

Part A: Suppose we compress each postings list by representing each destination
document of a skip pointer by the difference between its docID and the docID of the
origin of the skip pointer (i.e. gap between docIDs). Also represent successive docIDs
lying between two skip pointers by their successive gaps in docID (see the illustration of
skip pointers in the Compression Summary, Part 2 posted under 3/2/15). All gaps should
be represented using variable byte encoding. Also use variable byte encoding to
represent the skip pointer. Do not compress the term frequency. Estimate the space in
bytes required for a postings list with this compression. Your estimate should be in
terms of L. Your answer should be an estimate of the space used, but it will be graded on
the quality and correctness of the estimate, i.e. expect deductions for very coarse
estimates.

Part B: For a list of one million postings, how much compression is being achieved with
the representation of Part A in comparison to the representation without compression
presented at the beginning of this problem?

Problem 2 (from a 2010 exam 2 problem)

Consider a Web crawler that uses F different priority levels for fetching URLs, based on
the frequency of change of the URL. The crawler also uses different minimum delays
between requests for different hosts. It will contact a host known to have a large capacity
for handling requests more frequently than a host that has less capacity. For each host, h,
that has been contacted, the earliest next contact time th is recorded. Assume the
fetching priorities and minimum delays between requests are independent.

 Part A: In the Mercator Web crawler, the URL frontier is managed by two sets of first
in first out (FIFO) queues. Give an example in which a crawler must wait before fetching
a URL even though there is a URL that could be fetched immediately in one of the front
queues. Your example should show as much of the state of the front and back queues as
necessary to make clear that the state is legal and crawler is waiting unnecessarily.

 3

Part B: Consider replacing each FIFO front queue in the Mercator URL frontier with a
priority queue that is sorted on earliest next contact time of the host of each URL in the
queue. That is, the next element removed from the kth front priority queues is the URL
with the earliest next contact time among all the URLs with fetch priority k. Does this
eliminate the situation that the crawler must wait before fetching a URL even though
there is a URL that could be fetched immediately in one of the front queues? Does using
such a priority queue for each of the F front queues cause new problems? Explain all
your answers.

 Part C: What information is needed to compute the earliest next contact times for all
previously seen hosts? Where is this information stored? When is it updated? Be
explicit.

