Recommender Systems

- · Look at classic model and techniques
 - Items
 - Users
 - Recommend Items to Users
- · Recommend new items based on:
 - similarity to items user liked in past: individual history "Content Filtering"
 - Liked by other users similar to this user: collaborative history
 - "Collaborative Filtering"
 - Liked by other users: crowd history
 - easier case

1

Recommender System attributes

- · Need explicit or implicit ratings by user
 - Purchase is 0/1 rating
 - Movie tickets
 - Books
- · Have focused category
 - examples: music, courses, restaurants
 - hard to cross categories with content-based
 - easier to cross categories with collaborative-based
 - · users share tastes across categories?

2

Content Filtering

- · Items must have characteristics
- · user values item
 - ⇒ values characteristics of item
- model each item as vector of weights of characteristics
 - much like vector-based IR
- user can give explicit preferences for certain characteristics

3

Buy/no buy prediction method: similarity with centroid

- Average vectors of items user bought
 - user's centroid
- · Find similarity of new items to user's centroid
- Decide threshold for "buy" recommendation

4

Example

- user bought book 1 and book 2
- Average books bought = (0, 1, 0.5, 0)
- · Score new books
 - dot product gives: score(A) = 0.5; score (B)= 1
- decide threshold for recommendation

	1 st person	romance	mystery	sci-fi
book 1	0	1	1	0
book 2	0	1	0	0
new book A	1	.5	0	0
new book B	0	1	0	.2

Method issues

- · Centroid best way to build a preference vector?
- What metric use for similarity between new items and preference vector?
 - Normalization?
- · What if users give ratings?
 - Centroid per rating value?
- how include explicit user preferences
- · How determine threshold?

Example with explicit user preferences

How use scores of books bought?

Try: preference vector p where component k = user pref for characteristic k if ≠ 0 avg. comp. k of books bought when user pref =0 0 pref for user = "don' t care"

p=(0, 1, 0.5, -5)New scores? $p \cdot A = 0.5$ $p \cdot B = 0$

	1 st per	rom	mys	sci-fi
user pref	0	1	0	-5
book 1	0	1	1	0
book 2	0	1	0	0
new A	1	.5	0	0
new B	0	1	0	.2

Other methods: machine learning

- Major alternatives based on classifiers
 - Training set: items bought and not bought
 - Train classifier many algorithms
 - Classify new item as buy/no buy
- Observations
 - Uses books not bought. Problems?
 - Multiple rating value
 Can use multiple classes

.

Limitations of Content Filtering

- Can only recommend items similar to those user rated highly
- · New users
 - Insufficient number of rated items
- Only consider features explicitly associated with items
 - Do not include attributes of user

9

Applying concepts to search

- · Individual histories
 - Characterize individual by topic interest
 - Properties of objects interact with
 - Characterize query by related topics
 - · Role of terms of query in topic
 - Modify query to bias to shared topics
 - Modify ranking to prefer shared topics

10

Example study: Personalizing Web Search Using Long-term Browsing History (in WSDM11)

- · Goal: rerank
 - top 50 results from Google query
- · Strategy:
 - score snippets from search result against user profile
 - rerank based on snippet score
- · Selection of info for user profile
 - list of visited URLs w/ number visits
 - list of past search queries and pages clicked
 - list of terms with weights for content of pages visited

Personalizing Web Search Using Long-term Browsing History, cont

Studies selection of methods for

- · user profile: what sources of terms use
- · user profile: weights for terms

- tf-idf

· where get idf?

worked best

- "modified BM25"- a "log odds measure"
- · scoring
 - language model with adjustments for
 - URLs previously visited
 - · original rank of snippet in search

performed best

W_{modBM25} weighting

N = # documents on Web – estimated

 n_{ti} = # docs on Web containing term t_i - estimated

R = # documents in user browser history

 r_{ti} = # docs in user browser history that contain term t_{i}

 $W_{\text{modBM25}}(t_i) =$

$$\log \left(\begin{array}{c} \left(\frac{(r_{ti} + 0.5)(N - n_{ti} + 0.5)}{(n_{ti} + 0.5)(R - r_{ti} + 0.5)} \right) \end{array} \right)$$

Scoring

N_{si}= # unique words in snippet s_i

r_{si} = rank of snippet s_i in original search results

 \boldsymbol{n}_{i} = # previous visits by user to web page with snippet \boldsymbol{s}_{i}

 $w(t_k)$ = weigth of term t_k in user profile

modif. for URLs previously visited:

$$score_{w/URL}(s_i) = score(s_i)^*(1+v^*n_i)$$
 parameter v

 $score_{lang. model} (s_i) = \sum_{k=0}^{N_{si}} log ((w(t_k) + 1)/w_{total})$

· modif to acct. for orig. rank:

$$score_{w/orig}(s_i) = score(s_i)^*(1/(1+log(r_{si})))$$

Personalizing Web Search Using Long-term Browsing History **Evaluation**

- · "offline" evaluation:
 - relevance judgments by volunteers
 - used to select best of algorithmic variations
- online evaluation of best variations:
 - add-on to Browser by volunteers
 - interleave original results (no personalization) with results reranked by snippet score
 - record clicks by user which list from

15

Personalizing Web Search Using Long-term Browsing History Results

- · Offline: normalized DCG, avg. of 72 queries
 - Google's ranking w/out personalization: 0.502
 - best-performing of variations for reranking: 0.573
- Online
 - 8% queries: # clicks from original and reranked same
 - of rest: 60.5% queries: more clicks from reranked
 39.5% queries: more clicks from original

Observation

 Reranking can be done completely in browser if enough space for data for user profile

What we' ve just seen:

Recommender systems: Content Filtering Applying content filtering to search

Now back to recommender systems:

Collaborative Filtering

17

Collaborative Filtering

- Recommend new items liked by other users similar to this user
- need items already rated by user and other users
- · don't need characteristics of items
 - each rating by individual user becomes characteristic
- Can combine with item characteristics

 hybrid content/collaborative

Major method types

- · Nearest neighbor
 - Use similarity function
 - Prediction based on previously rated items
- · Matrix Factorization
 - "Latent factors"
 - Matrix decomposition
- Both use (user x item) matrix
 - vector similarity

Example of nearest neighbor: **Preliminaries**

- Notation
 - $r(u,i) = rating of i^{th} item by user u$
 - $-I_u$ = set of items rated by user u

 - $$\begin{split} &-I_{u,v} = set~of~items~rated~by~both~users~u~and~v\\ &-U_{i,j} = set~of~users~that~rated~items~i~and~j \end{split}$$
- · Adjust scales for user differences
 - Use average rating by user u:

$$r_u^{\text{avg}} = (1/|I_u|) * \sum_{i \text{ in } I_u} r(u,i)$$

- Adjusted ratings: $r_{adj}(u,i) = r(u,i) - r_u^{avg}$

One choice of similarity function: **User Similarities**

- similarity between users u and v
 - Pearson correlation coefficient

$$sim(u,v) = \frac{\sum\limits_{i \text{ in } I_{u,v}} (r_{adj}(u,i) * r_{adj}(v,i))}{(\sum\limits_{i \text{ in } I_{u,v}} (r_{adj}(v,i))^2 * \sum\limits_{i \text{ in } I_{u,v}} (r_{adj}(v,i))^2)^{1/2}}$$

Predicting User's rating of new item: User-based

For item i not rated by user u

$$r^{pred}(u,i) = r_u^{avg} + \frac{\sum\limits_{v \text{ in } S} (sim(u,v) * r_{adj}(v, i))}{\sum\limits_{v \text{ in } S} |sim(u,v)|}$$

S can be all users who have rated i or just those users most similar to u

Collaborative filtering example

user		book 1	book 2	book 3	book 4
ratings	user 1	5	1	2	0
	user 2	x	5	2	5
	user 3	3	1	X	2
	user 4	4	0	2	?
		book 1	book 2	book 3	book 4
adj.	user 1	book 1	book 2	book 3	book 4
user	user 1 user 2			book 3 0 -2	
- 1		3		0	

Collaborative filtering example

- $sim(u1,u4) = (6+2)/(10*8)^{1/2} = .894$
- $sim(u2,u4) = (-2)/(5*4)^{1/2} = -.447$
- $sim(u3,u4) = (2+2)/(2*8)^{1/2} = 1$

• predict r(u4, book4) = 2 +
$$\frac{(-2)^*.894 + 1^*(-.447) + 0^*1}{.894 + .447 + 1}$$

= 2 - .955 \approx 1

Another choice of similarity function: Item Similarities

- · similarity between items i and j
 - vector of ratings of users in Uii
 - cosine measure using adjusted ratings

$$sim(i,j) = \frac{\sum\limits_{u \text{ in } U_{i,j}} (r_{adj}(u,i) * r_{adj}(u,j) \text{)}}{(\sum\limits_{u \text{ in } U_{i,j}} (r_{adj}(u,i))^2 \sum\limits_{u \text{ in } U_{i,j}} (r_{adj}(u,j))^2 \text{)}^{1/2}}$$

Predicting User's rating of new item: Item-based

For item i not rated by user u

$$r^{item\text{-pred}}(u,i) = \frac{\sum\limits_{j \text{ in } T} (sim(i,j)*r(u,j))}{\sum\limits_{j \text{ in } T} |sim(i,j)|}$$

T can be all items in I_n or just items most similar to i

> Prediction uses only u's ratings, but similarity uses other users' ratings

Limitations

- · May not have enough ratings for new users
- · New items may not be rated by enough
- · Need "critical mass" of users

- All similarities based on user ratings

But can take user "out of comfort zone"

Applying nearest-neighbor collab. filtering concepts to search

- · Collaborative histories
 - How determine user similarity?
 - · Behavior on identical searches?
 - · Overlap of general topic interests?
 - From overlapping behaviors
 - Hybrid content-based and behavior-based
 - · Computational expense?
 - Argues for general topic-interest characterizations
 - How apply similarity?
 - · Same search? Bias ranking?
 - Same topic of search? Bias topics of results? 28

Example

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in WWW07)

- · Goal: rerank search results
- Based on query log history clicks as ratings
- Also uses 67 pre-defined topic categories
- · Strategy:
 - get similarity of users based on user history of visited
 - find K most similar users to user doing search K nearest neighbor; use K=50
 - calc. score for each result of search based on click history of K nearest neighbors
 - rerank results of search based on score

Details

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in WWW07)

P(u) = collection of Web pages visited by user u in the past

P(p|u) =# times u clicked on page p in past

total # times u clicked on a page in past

w(p) = log(total # users / # users visited page p)

"impact weight" - idf-like

c(p) = "category vector" for page p

do classification of page

vector gives confidence # for top 6 categories (other entries 0)

User profile $\boldsymbol{c}_{\ell}(\mathbf{u}) = \sum_{\mathbf{p} \text{ in P}(\mathbf{u})} P(\mathbf{p}|\mathbf{u}) w(\mathbf{p}) \boldsymbol{c}(\mathbf{p})$

 $\boldsymbol{c}_{t}(\mathbf{u}_{1}) \cdot \boldsymbol{c}_{t}(\mathbf{u}_{2})$ User similarity $sim(u_1, u_2) =$ $||\boldsymbol{c}_{\ell}(\boldsymbol{u}_1)|| ||\boldsymbol{c}_{\ell}(\boldsymbol{u}_2)||$

Details

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in *WWW07*)

 $S_k(u_a)$ denotes k nearest neighbors of user u_a

click history:

 $|\text{clicks}(q,p,u_s)|$ = # clicks on pg p by user u_s on past query q $|\text{clicks}(q,^*,u_s)|$ = # clicks overall by user u_s on past query q

the score of a page p for query q and user u:

$$S \; (q,p,u) = \quad \frac{\sum_{u_s \; \text{in} \; S_k(u)} \; sim(u_s,u) \; * \; |\text{clicks}(q,p,u_s)|}{\beta + \sum_{u_s \; \text{in} \; S_k(u)} \; |\text{clicks}(q,^*,u_s)|}$$

 β is a "smoothing factor"; taken to be 0.5

31

Experiments

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in *WWW07*)

- Data set: MSN query logs 12 days August 2006 sampled 10,000 distinct users used 11 days for training, last day for testing
 4000 test queries
- Action, for each user and query
 - re-rank top 50 results using a "fusion" of original rank and order given by page scores S(q,p,u)
- · Evaluation: 2 metrics
 - 1.a DCG-like metric with clicking indicating relevance
 - 2. average rank of clicked items

32

Results

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in WWW07)

- · Good news:
 - re-ranking improves over original ranking
- · So-so news:

improvement is 3.62% on queries where there is room for improvement

Not so good news:

non-collaborative personalization improves 3.68%

$$S (q,p,u) = \frac{|clicks(q,p,u)|}{\beta + |clicks(q,^*,u)|}$$

33

Where are we?

- · Refinement/Personalization of results
- · Study techniques of

Recommender systems

- Content filtering
 - · Applying content filtering to search
- Collaborative filtering
 - · Nearest neighbor methods
 - Applying nearest neighbor method to search
 - ➤ Matrix factorization methods