Searching non-text information objects

Non-text digital objects

- Music
- · Speech
- Images
- · 3D models
- Video
- ?

2

Ways to query for something

- 1. Query by category/ theme
 - easiest work done ahead of time
- 2. Query by describing content
 - text-based query
 - text-based retrieval?
- 3. Query by example
 - "similar to"
 - imprecise example sketch
- query text docs and non-text objects with 2
- don't often do doc search by 3
- big move to do music, images by 3

Query by describing content

- · text-based queries
- · where get text-based content?
 - author labels
 - metadata
 - URLs
 - text near imbedded objects
 - html pages
 - group tagging
 - folksonomy
 - Flickr

4

Query by example

- · How represent objects?
 - features of a class of objects (e.g. image)
 - how compare features?
 - what data structures?
 - what computational methods?
- Issues
 - large number of objects
 - accuracy of representation
 - large size of representation
 - complexity of computations

- tradeoffs

5

Features

- typically vector of numbers characterizing object representation
- "similar to" = close in vector space
 - threshold
 - Euclidean distance?
 - other choices for distance metric

Example: content- based image search

7

First example method: color histogram

- · k colors
- Histogram x: % pixels each color
- k×k matrix A of color similarity weights
- · histogram defines feature vectors
- $dist_{histo}(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x} \boldsymbol{y})^{t} A(\boldsymbol{x} \boldsymbol{y})$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}(x_i - y_i)(x_j - y_j)$$

- cross-talk: quadratic terms needed

not Euclidean distance

color histograms: reducing complexity

- compute RED_{avg}, GREEN_{avg}, BLUE_{avg}
 over all pixels
- use to construct 3D-vector
- · use Euclidean distance
- · get close candidates
- examine close candidates with full histogram metric

9

color histograms: observations

- · works for certain types of images
 - sunset canonical example
- · color histogram global property
- this only small part of work: QBIC system, IBM, 1995

10

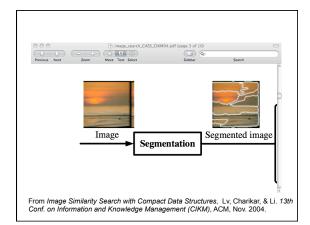
Second example method: a region-based representation

- · region-based features of images
- query processed in same way as collection
- · space-conscious: use bit vectors
- · levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- compare top k candidates using region bit vectors

11

Processing images of collection & query

- segment into homogeneous regions
 - 14 dimensional feature vectors
- threshold and transform
- high-dimensional bit vectors store
- XOR for distance between regions
- build image feature vector
 - n region bit-vectors + weights ⇒
 - 1 m-dimensional real-valued image feature vector
 - L₁ distance between feature vectors
- · transform image vector
 - one high-dimensional bit vector for image store 12



Components region feature vector

- color moments 9 dim
 - role similar to histogram
- bounding box region 5 dim
 - In(aspect ratio)
 - In (bounding box size)
 - density = # pixels / bounding box size
 - centroid x
 - centroid y

weight regions proportional to sq. root of area

Observations: region based

- · Example of one regional method
 - lots of research, lots of places!
- · This method uses sampling heavily - produce bit vectors
- · Part of larger project multiple media

- CASS, Princeton, 2004

Processing images of collection & query

- segment into homogeneous regions
 - 14 dimensional feature vectors
- · threshold and transform
 - high-dimensional bit vectors store
 - XOR for distance between regions
- · build image feature vector
 - n region bit-vectors + weights ⇒
 - 1 m-dimensional real-valued image feature vector
 - L₁ distance between feature vectors
- · transform image vector
 - one high-dimensional bit vector for image store

Interesting details

- · Choices of distance:
 - prove that preserve distance relationships when go from real-valued vectors to bit vectors
- · Nature of sampling:

Example: region bit vectors -> 1 m-dim real image vector To get the value for one component of real vector

- 1. choose h positions of region bit vectors (mask)
- 2. choose an h-dim. bit vector as pattern
- 3. For each region bit vector If bit values at h positions of region vector equal pattern add weight of region to component of image vector

h (just 1) and m are parameters to choose

Third example method: Combining simple ideas

- Goals
 - reduce search space
 - reduce disk I/O cost
- Simple ideas
 - K-means clustering of image database
 - B+ trees
 - heuristic search limits
- New ideas
 - search beyond cluster containing query image
 - limit search within each cluster

Image representation

- · Inpute: non-texture RGB images
- · Process
 - resize to uniform 128x128 pixels
 - transform to 964 dimensional feature vector

19

Data space representation

- · Cluster data space using K-means
 - search for "most cost effective" K
 - · search space size vs result accuracy
 - · use cluster validity indexes
 - · use majority vote of different indexes
- · Find cluster centroids
- · For each cluster build a B+ tree
 - B+ tree contains each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center

1

Search space for query

- · don't search things know probably too far
- don't limit search to just cluster containing query
- · Chose similarity threshhold c for data set
- · search images in outer shell of cluster
 - range d-c to d+c for d=distance query to its centroid
 - B+ tree good for range queries
- Same principle whether q in boundry of a cluster or not
 - but use different c : c_{same} , c_{diff}

Results

- find best 5 matches to a query image
- · most interesting result:

resourses used versus value find

- sample numbers (1000 images):
 - average distance
 - K-means & B+ tree 51.887
 - K-means 52.212
 - linear search 50.881
- size search space
 - K-means & B+ tree 147
 - K-means 92.39
 - · linear search 900

22

Other Results

- · visually:
 - not beating other methods for image quality
- · calculate precision of top 5 returns
 - 10 pre-existing image categories
 - crude
 - sample numbers:
 - them 0.568, linear search 0.576

__

Observations

- · dynamic capability of B+ trees
- · color based
- · no region analysis of images
- image representation and data space representation independent

citation: "Integrating wavelets with clustering and indexing for effective content-based image retrieval" 2012

Fourth example method: Image ranking

- · given similarity measures
- · use PageRank style
- define

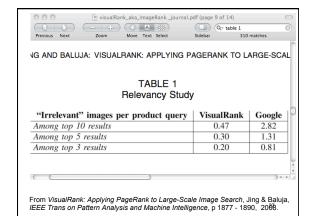
$$\mathbf{v} = \alpha(1/n) + (1-\alpha)S\mathbf{v}$$

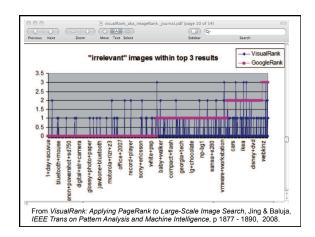
- where
 - n is the number of images to be ranked
 - S is a matrix of image-image similarities column normalized, symmetric
 - v is the vector of VisualRanks
 - α is the usual parameter

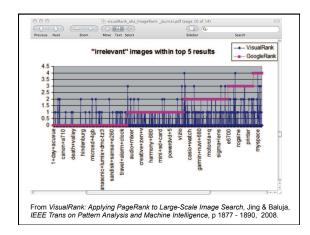
25

Observations: Image rank

- intention to use on images returned by other means
 - e.g. text based
- · graph undirected
- tested on Google image search
 - VisualRank, Google, 2008
- · Deployed?







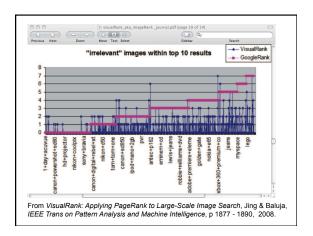


Image search: Summary of techniques

- Techniques seen
 - aggregate/average features
 - sample
 - course screening followed by more accurate
- Goals
 - reduce dimension
 - reduce complexity of distance metric
 - reduce space

31

Image search: Commercial search engines

- Use everything you can afford to use
- Text still king!?

32

DEMOS