
1

1

Building the index

2

Have seen

•  Given Inverted index, how compute the
results for a query
– Merge-based algorithms

•  Data structure for accessing inverted
index
– Hash table
– B+ tree

3

Now

•  How construct inverted index from
“raw” document collection?

– Don’t worry about getting into final index

data structure

4

Preliminary decisions
•  Define “document”: level of granularity?

– Book versus Chapter of book
–  Individual html files versus combined files

that composed one Web page

•  Define “term”
–  Include phrases?

•  How determine which adjacent words -- or all?
– Stop words?

5

Pre-processing text documents
•  Give each document a unique ID: docID
•  Tokenize text

–  Distinguish terms from punctuation, etc.
•  Normalize tokens

–  Stemming
•  Remove endings: plurals, possessives, “ing”,

– cats -> cat; accessible -> access
•  Porter’s algorithm (1980)

–  Lemmatization
•  Use knowledge of language forms

– am, are, is -> be
•  More sophisticated than stemming

 (See Intro IR Chapter 2) 6

Construction of posting lists

•  Overview
–  “document” now means preprocessed document
–  One pass through collection of documents
–  Gather postings for each document
–  Reorganize for final set of lists: one for each term

•  Look at algorithms when can’t fit everything in
memory
–  Main cost file page reads and writes

•  “file page” minimum unit can read from drive
– May be multiple of “sector” device constraint

2

7

Memory- disk management

•  Have buffer in main memory
– Size = B file pages
– Read from disk to buffer, page at a time

•  Disk cost = 1 per page
– Write from buffer to disk, page at at time

•  Disk cost = 1 per page

8

Sorting List on Disk - External Sorting
General techique

•  Divide list into size-B blocks of
contiguous entries

•  Read each block into buffer, sort, write
out to disk

•  Now have ⎡L/B⎤ sorted sub-lists
where L is size of list in file pages

•  Merge sorted sub-lists into one list
– How?

9

Merging Lists on Disk:
General technique

•  K sorted lists on disk to merge into one
•  If K+1 <= B:

–  Dedicate one buffer page for output
–  Dedicate one buffer page for each list to merge

input from different lists
–  Algorithm:

Fill 1 buffer page from each list on disk
Repeat until merge complete:

Merge buffer input pages to output buffer pg
When output buffer pg full, write to disk
When input buffer pg empty, refill from its list

10

•  If K+1 > B:
– Dedicate one buffer page for output
– B-1 buffer page for input from different lists
– Define “level-0 lists”: lists need to merge

11

If K+1 > B: Algorithm
j=0
Repeat until one level-j list:

{  Group level-j lists into groups of B-1 lists
// ⎡K/(B-1)⎤ groups for j=0

 For each group, merge into one level-(j+1) list by:
 { Fill 1 buffer page from each level-j list in group
 Repeat until level-j merge complete:

 Merge buffer input pages to output buffer pg
 When output buffer pg full,
 write to group’s level-(j+1) list on disk
 When input buffer pg empty, refill from its list

 }
 j++
}

Number of file page read/writes?

•  Merge K sorted lists?
– Merge-tree height = ⎡logB-1K⎤
– Read/write all lists once each level.

•  Ignore breakage
– Read/write all lists ⎡logB-1K⎤ times total

•  External sort length L list?
– Create ⎡L/B⎤ sorted sub-lists: L reads/writes

– Merge ⎡L/B⎤ sorted sub-lists:
•  L *⎡logB-1 ⎡L/B⎤ ⎤ reads/writes

– Total # page read/writes = O(L logB-1L) 12

3

So far

•  Preprocessing the collection
•  Sorting a list on disk (external sorting)

– Cost as disk I/O

Now look at actually building

13 14

Index building Algorithm:
 “Block Sort-based”

1. Repeat until entire collection read:
–  Read documents, building
 (term, <attributes>, doc) tuples until buffer full

•  one tuple for each occurrence of a term
–  Sort tuples in buffer by term value as primary,

doc as secondary
•  Tuples for one doc already together
•  Use sort algorithm that keeps appearance

order for = keys: stable sorting
–  Build posting lists for each unique term in buffer

•  Re-writing of sorted info
–  Write partial index to disk

15

continuing “Blocked Sort-based”

2.  Merge partial indexes on disk into
full index

•  Partial index lists of (term:postings list)
entries must be merged

•  Partial postings lists for one term must be
merged

– Concatenate
•  Keep documents sorted within posting list

•  If postings for one document broken across
partial lists, must merge

16

Remarks: Index Building
•  As build index:

– Build dictionary
– Aggregate Information on terms, e.g.

document frequency
•  store w/ dictionary

– What happens if dictionary not fit in main
memory as build inverted index?

•  May not actually keep every term occurrence,
maybe just first k.
–  Early Google did this for k=4095. Why?

17

What about anchor text?

•  Complication
•  Build separate anchor text index

– strong relevance indicator
– keeps index building less complicated

18

Other separate indexes?
Examples
•  Other strong relevance indicators

– abstracts of documents
•  compare listing abstract positions 1st in main

index
–  tiered indexes based on term weights

•  types of documents
– volatility

– news articles
– blogs
– etc.

