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Distributed computing: 
index building and use 
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Distributed computing Goals 

Distributing computation across 
several machines to 
 

•  Do one computation faster - latency 
•  Do more computations in given 

time - throughput 
•  Tolerate failure of 1+ machines 
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Distributing computations 

Ideas? 
⇒  Finding results for a query? 
•  Building index? 

•  Goals 
–  Keep all machines busy 
–  Be able to replace badly-behaved machines 

seamlessly! 
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Distributed Query Evaluation: 
Strategies 

•  Assign different queries to different machines 
•  Break up multi-term query: assign different 

query terms to different machines 
-  good/bad consequences? 

•  Break up lexicon: assign different index terms 
to different machines? 
–  good/bad consequences? 

•  Break up postings lists: Assign different 
documents to different machines? 
–  good/bad consequences? 

Keep all machines busy? 
Seamlessly replace badly-behaved machines? 
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Example:  
Google query evaluation circa 2002 

•  Parallelize computation 
– distribute documents randomly to pieces of 

index  
•  Pool of machines for each piece- choose one 
•  Why random? 

•  Load balancing and reliability 
– Scheduler machines 

•  assign tasks to pools of machines 
•  monitor performance 
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Google Query Evaluation:  Details 
circa 2002 

•  Enter query -> DNS-based directed to one of 
geographically distributed clusters 
–  Load balance & fault tolerance 
–  Round-trip time 

•  w/in cluster, query directed to 1 Google Web 
Server (GWS) 
–  Load balance & fault tolerance 

•  GWS distributes query to pools of machines  
–  Load sharing 

•  Query directed to 1 machine w/in each pool 
–  Load balance & fault tolerance 
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Issues for distributed documents 

•  How many take from each pool to get m results? 

•  Throughput limits? 
–  each machine does full query evaluation 
–  disk access limiting constraint? 
–  distributing index by term instead may help 
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Distributing computations 

Last time: Finding results for a query. 
 

Methods 
•  Assign different queries to different machines 

–  Google: geographic distribution + cluster distribution 
•  Break up lexicon: assign different index terms 

to different machines 
•  Break up postings lists: Assign different 

documents to different machines 
–  Google: randomly distribute docs to pools of 

machines;  1 machine per pool assigned query 
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Distributing computations 

 
ü  Finding results for a query? 
⇒   Building index? 

10 

Distributed Index Building 

•  Can easily assign different documents 
to different machines 

•  Efficient? 
•  Goals 

– Keep all machines busy 
– Be able to replace badly-behaved 

machines seamlessly! 
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Google Index Building circa 2003:  
MapReduce framework 

•  programming model  
•  implementation for large clusters 
 

•  Google introduced for index building and PageRank 
“for processing and generating large data sets” 

•  The Apache Hadoop project developed open-source 
software 

•  Other applications: 
–  database queries 

•  join like multi-term query eval. 
–  statistics on queries in given time period 
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MapReduce Programming Model 
•  input set:    {(input keyi, valuei)| 0 ≤ i ≤ input size} 

•  user chooses type value – e.g. whole document 
•  output set: {(output keyi, valuei)| 0 ≤ i ≤ output size} 

•  Map  (written by user): 
(input key, value) →  

{(intermed. keyj, valuej)| 0 ≤ j ≤ Map result size} 
 

•  system groups all Map output pairs for input set by 
intermediate key (shuffle phase) 

•  gathers by intermediate key value 
•  supply to Reduce by iterator 
  

•  Reduce (written by user) process intermediate values:  
(intermed. key, list of values) → (output key, value)  
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MapReduce for  
building inverted index 

•  Input pair:  (docID, contents of doc) 
•  Map:  produce {(term, docID)} for each 

term appearing in docID 
•  Input to Reduce: (term, docIDs) pairs for 

each term  
•  Output of Reduce: (term, sorted list of 

docIDs containing that term) 
– postings list! 
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Diagram of  
computation distribution 

See Figure 2.3 (pg 27) in  
Mining of Massive Data Sets by Rajaraman, 

Leskovec and Ullman 
 

Originally appeared as Figure 1 in 
MapReduce: Simplified Data Processing on Large 

Clusters  by J. Dean and S. Ghemawat,   
Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113. 

MapReduce parallelism 

•  Map phase and shuffle phase may overlap 
•  Shuffle phase and reduce phase may overlap 
•  Map phase must finish before reduce phase 

starts 
–  reduce depends on all values associated with a 

given key 
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MapReduce Fault Tolerance 

•  Master fails => restart whole computation 
•  Worker node fails 

–  Master detects failure 
–  must redo all Map tasks assigned to worker 

•  output of completed Map tasks on failed worker’s disk 
–  for failed Map worker, Master  

•  reschedules each Map task 
•  notifies reducer workers of change in input location  

–  for failed Reduce worker, Master 
•  reschedules each Reduce task 

–  rescheduling occurs as live workers become available 
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Hadoop 

“The Apache Hadoop project 
develops open-source software for 
reliable, scalable, distributed 
computing. “ 
 
Includes MapReduce 
 
 
http://hadoop.apache.org/index.html 
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Remarks 

•  Google built on large collections of inexpensive 
“commodity PCs” 
–  always some not functioning 

•  Solve fault-tolerance problem in software 
–  redundancy & flexibility NOT special-purpose hardware 

•  Keep machines relative generalists 
– machine becomes free ⇒  

assign to any one of set of tasks 
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June 2010 New Google index building: 
Caffeine 

•  daily crawl “several billion” documents 
•  Before: 

–  Rebuild index: new + existing 
–  series of 100 MapReduces to build index 
–  “each doc. spent 2-3 days being indexed”  

•  After: 
–  Each document fed through Percolator:  

incremental update of index 
–  Document indexed 100 times faster (median)  
–  Avg. age doc. in search result decr. “nearly 50%” 19 

Percolator 

•  Built on top of Bigtable distributed storage 
–  “tens of petabytes” in indexing system 

•  Provides random access  
–  Requires extra resources over MapReduce 

•  Provides transaction semantics 
–  Repository transformation highly concurrent 
–  Requires some consistency guarantees for data 

•  “Observers” do tasks; write to table 
•  Writing to table creates work for other observers 
•  “around 50” Bigtable op.s to process 1 doc. 
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Bigtable Overview 

•  Distributed database system 
–  One big table 
–  Sparse 

•  cells indexed by row key, column key, timestamp 
–  Sorted by row key 

•  rows have variable number of columns 
•  Atomic read-modify-write by row 

•  Data in cell “uninterpreted strings” 
–  User provide interpretation 
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Bigtable Overview: Distribution 

•  Rows partitioned into tablets 
–  contiguous key space 

•  tablet servers execute operations  
•  Performance 

–  large number tablet servers 

•  Fault tolerance 
–  replication of data  
–  transaction log 

•  server take over for failed server 
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Percolator builds on Bigtable 

•  Percolator metadata stored alongside data in 
special columns of Bigtable 

•  Percolator adds fuctionality: 
– Multi-row transactions 
– “observer” framework 
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Percolator observers  
•  users write observer code 
•  run distributed across collection of machines 
•  observer “registers” function and set of 

columns with Percolator 
•  Percolator invokes function after data written 

in one of columns (any row) 
–  Percolator must find “dirty” cells 

•  search distributed across machines 
–  avoid >1 observer for a single column 
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Percolator transactions 

•  maintains locks 
•  multiple versions each data item  

– timestamps 
– stable “snapshots” for reads 

•  compare database system 
– Percolator not require “extremely low 

latency” 
• affects approach 
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Caffeine versus MapReduce 

•  Caffeine uses “roughly twice as many 
resources” to process same crawl rate 

•  New document collection “currently 3x larger 
than previous systems” 
–  Only limit available disk space 

•  Document indexed 100 times faster (median) 

•  If number newly-crawled docs near size index, 
MapReduce better 
–  random lookup v.s. streaming  26 


