
1

1

Distributed computing:
index building and use

2

Distributed computing Goals

Distributing computation across
several machines to

•  Do one computation faster - latency
•  Do more computations in given

time - throughput
•  Tolerate failure of 1+ machines

3

Distributing computations

Ideas?
⇒  Finding results for a query?
•  Building index?

•  Goals
–  Keep all machines busy
–  Be able to replace badly-behaved machines

seamlessly!
4

Distributed Query Evaluation:
Strategies

•  Assign different queries to different machines
•  Break up multi-term query: assign different

query terms to different machines
-  good/bad consequences?

•  Break up lexicon: assign different index terms
to different machines?
–  good/bad consequences?

•  Break up postings lists: Assign different
documents to different machines?
–  good/bad consequences?

Keep all machines busy?
Seamlessly replace badly-behaved machines?

5

Example:
Google query evaluation circa 2002

•  Parallelize computation
– distribute documents randomly to pieces of

index
•  Pool of machines for each piece- choose one
•  Why random?

•  Load balancing and reliability
– Scheduler machines

•  assign tasks to pools of machines
•  monitor performance

6

Google Query Evaluation: Details
circa 2002

•  Enter query -> DNS-based directed to one of
geographically distributed clusters
–  Load balance & fault tolerance
–  Round-trip time

•  w/in cluster, query directed to 1 Google Web
Server (GWS)
–  Load balance & fault tolerance

•  GWS distributes query to pools of machines
–  Load sharing

•  Query directed to 1 machine w/in each pool
–  Load balance & fault tolerance

2

Issues for distributed documents

•  How many take from each pool to get m results?

•  Throughput limits?
–  each machine does full query evaluation
–  disk access limiting constraint?
–  distributing index by term instead may help

7 8

Distributing computations

Last time: Finding results for a query.

Methods
•  Assign different queries to different machines

–  Google: geographic distribution + cluster distribution
•  Break up lexicon: assign different index terms

to different machines
•  Break up postings lists: Assign different

documents to different machines
–  Google: randomly distribute docs to pools of

machines; 1 machine per pool assigned query

9

Distributing computations

ü  Finding results for a query?
⇒  Building index?

10

Distributed Index Building

•  Can easily assign different documents
to different machines

•  Efficient?
•  Goals

– Keep all machines busy
– Be able to replace badly-behaved

machines seamlessly!

11

Google Index Building circa 2003:
MapReduce framework

•  programming model
•  implementation for large clusters

•  Google introduced for index building and PageRank
“for processing and generating large data sets”

•  The Apache Hadoop project developed open-source
software

•  Other applications:
–  database queries

•  join like multi-term query eval.
–  statistics on queries in given time period

12

MapReduce Programming Model
•  input set: {(input keyi, valuei)| 0 ≤ i ≤ input size}

•  user chooses type value – e.g. whole document
•  output set: {(output keyi, valuei)| 0 ≤ i ≤ output size}

•  Map (written by user):
(input key, value) →

{(intermed. keyj, valuej)| 0 ≤ j ≤ Map result size}

•  system groups all Map output pairs for input set by
intermediate key (shuffle phase)

•  gathers by intermediate key value
•  supply to Reduce by iterator

•  Reduce (written by user) process intermediate values:
(intermed. key, list of values) → (output key, value)

3

13

MapReduce for
building inverted index

•  Input pair: (docID, contents of doc)
•  Map: produce {(term, docID)} for each

term appearing in docID
•  Input to Reduce: (term, docIDs) pairs for

each term
•  Output of Reduce: (term, sorted list of

docIDs containing that term)
– postings list!

keys 14

Diagram of
computation distribution

See Figure 2.3 (pg 27) in
Mining of Massive Data Sets by Rajaraman,

Leskovec and Ullman

Originally appeared as Figure 1 in
MapReduce: Simplified Data Processing on Large

Clusters by J. Dean and S. Ghemawat,
Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113.

MapReduce parallelism

•  Map phase and shuffle phase may overlap
•  Shuffle phase and reduce phase may overlap
•  Map phase must finish before reduce phase

starts
–  reduce depends on all values associated with a

given key

15

MapReduce Fault Tolerance

•  Master fails => restart whole computation
•  Worker node fails

–  Master detects failure
–  must redo all Map tasks assigned to worker

•  output of completed Map tasks on failed worker’s disk
–  for failed Map worker, Master

•  reschedules each Map task
•  notifies reducer workers of change in input location

–  for failed Reduce worker, Master
•  reschedules each Reduce task

–  rescheduling occurs as live workers become available
16

17

Hadoop

“The Apache Hadoop project
develops open-source software for
reliable, scalable, distributed
computing. “

Includes MapReduce

http://hadoop.apache.org/index.html

18

Remarks

•  Google built on large collections of inexpensive
“commodity PCs”
–  always some not functioning

•  Solve fault-tolerance problem in software
–  redundancy & flexibility NOT special-purpose hardware

•  Keep machines relative generalists
– machine becomes free ⇒

assign to any one of set of tasks

4

June 2010 New Google index building:
Caffeine

•  daily crawl “several billion” documents
•  Before:

–  Rebuild index: new + existing
–  series of 100 MapReduces to build index
–  “each doc. spent 2-3 days being indexed”

•  After:
–  Each document fed through Percolator:

incremental update of index
–  Document indexed 100 times faster (median)
–  Avg. age doc. in search result decr. “nearly 50%” 19

Percolator

•  Built on top of Bigtable distributed storage
–  “tens of petabytes” in indexing system

•  Provides random access
–  Requires extra resources over MapReduce

•  Provides transaction semantics
–  Repository transformation highly concurrent
–  Requires some consistency guarantees for data

•  “Observers” do tasks; write to table
•  Writing to table creates work for other observers
•  “around 50” Bigtable op.s to process 1 doc.

20

Bigtable Overview

•  Distributed database system
–  One big table
–  Sparse

•  cells indexed by row key, column key, timestamp
–  Sorted by row key

•  rows have variable number of columns
•  Atomic read-modify-write by row

•  Data in cell “uninterpreted strings”
–  User provide interpretation

 21

Bigtable Overview: Distribution

•  Rows partitioned into tablets
–  contiguous key space

•  tablet servers execute operations
•  Performance

–  large number tablet servers

•  Fault tolerance
–  replication of data
–  transaction log

•  server take over for failed server

22

Percolator builds on Bigtable

•  Percolator metadata stored alongside data in
special columns of Bigtable

•  Percolator adds fuctionality:
– Multi-row transactions
– “observer” framework

23

Percolator observers
•  users write observer code
•  run distributed across collection of machines
•  observer “registers” function and set of

columns with Percolator
•  Percolator invokes function after data written

in one of columns (any row)
–  Percolator must find “dirty” cells

•  search distributed across machines
–  avoid >1 observer for a single column

24

5

Percolator transactions

•  maintains locks
•  multiple versions each data item

– timestamps
– stable “snapshots” for reads

•  compare database system
– Percolator not require “extremely low

latency”
• affects approach

25

Caffeine versus MapReduce

•  Caffeine uses “roughly twice as many
resources” to process same crawl rate

•  New document collection “currently 3x larger
than previous systems”
–  Only limit available disk space

•  Document indexed 100 times faster (median)

•  If number newly-crawled docs near size index,
MapReduce better
–  random lookup v.s. streaming 26

