
Searching the Deep Web

Extent of problem

· Estimates

- 500 times larger than "surface" Web in terabytes of information
- diverse uses and topics
 - 51% databases of Web pages behind query forms non-commercial (2004)
 isolutes pages also rescabable by standard graviti
 - includes pages also reachable by standard crawling
 17% surface Web sites are not commercial sites (2004)
- in 2004 Google and Yahoo each indexed 32% Web objects behind guery forms
- 84% overlap \Rightarrow 63% not indexed by either

- 307,000 Deep Web sites est. 2004 (2007 CACM)
 - 450,000 Web databases: avg. 1.5 per site
 - 1,258,000 unique Web query interfaces (forms)
 - avg. 2.8 per database
 - 72% at depth 3 or less
 - 94% databases have some interface at depth 3 or less
 - exclude non-query forms, site search
 - estimate extrapolation from sampling

Random sampling

- are 2,230,124,544 valid IPv4 addresses
- randomly sample 1 million of these
- take 100,000 IP address sub-sample
- For sub-sample

make HTTP connection & determine if Web server crawl Web servers to depth 10

For full sample

 make HTTP connection & determine if Web server
 crawl Web servers to depth 3

;

Analysis of data from samples

- Find
 - # unique query interfaces for site
 - # Web databases
 - query interface to see if uses same database
 - # deep Web sites
 - not include forms that are site searches
- Extrapolate to entire IP address space

Approaches to getting deep Web data

- Application programming interfaces
 - allow search engines get at data
 - a few popular site provide
 - not unified interfaces
- · virtual data integration
 - a.k.a. mediating
 - "broker" user query to relevant data sources
 issue query real time
- Surfacing
- a.k.a warehousing
- build up HTML result pages in advance

Virtual Data Integration

• In advance:

- identify pool of databases with HTML access pages
 - crawl
- develop model and query mapping for each source: mediator system
 - domains + semantic models
 - · identify content/topics of source
 - develop "wrappers" to "translate" queries
- 8

10

12

Virtual Data Integration

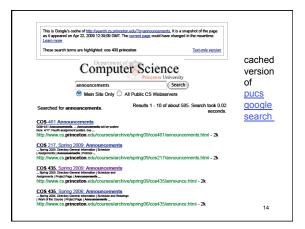
- When receive user query:
 - from pool choose set of database sources to query
 - based on source content and query content
 - real-time content/topic analysis of query
 - develop appropriate query for each data source
 - integrate (federate) results for user
 extract info
 - combine (rank?) results

Mediated scheme

Mappings

form inputs → elements of mediated scheme query over mediated scheme → queries over each form user query → query over mediated scheme

- creating mediated scheme – manually
 - by analysis of forms HARD


Virtual Integration: Issues Good for specific domains easier to do viable when commercial value Doesn' t scale well

11

• In advance:

- crawl for HTML pages containing forms that access databases
- for each form
 - execute many queries to database using form
 how choose queries?
 - index each resulting HTML page as part of
- general index of Web pages – pulls database information to surface
- When receive user query:
 - database results are returned like any other

Surfacing: Google methodology

- · Major Problem:
 - Determine queries to use for each form
 - determine templates
 - generate values for selected inputs
- Goal:

Good coverage of large number of databases

- "Good", not exhaustive
 - · limit load on target sites during indexing
 - · limit size pressure on search engine index
 - want "surfaced" pages good for indexing
- trading off depth within DB site for breadth of sites

15

Query Templates

- given form with n inputs
- choose subset of inputs to vary => template
- choose from text boxes & select menues "state" select menu, "search box" text box, "year" select menu
- values for choosen inputs will vary
- rest of inputs set to defaults or "don' t care"
- want small number choosen inputs
 - yield smaller number form submissions to index

16

18

Building Query Templates

- Want "informative templates": when vary choosen input values, pages generated are "sufficiently distinct"
- · Building informative templates
 - start with templates for single choosen input
 - repeat:
 - extend "informative templates" by 1 input
 - determine "informativeness" for each new

template

- use page signature for "informativeness" test 17

Generating values

generic text boxes: any words

for one box:

- · select seed words from form page to start
- · use each seed word as inputs to text box
- extract more keywords from results
 - tf-idf analysis
- remove words occur in too many of pages in results
 remove words occur in only 1 page of results
- · repeat until no new keywords or reach max
- choose subset of keywords found

Generating values

choosing subset of words for generic boxes

- cluster keywords based on words on page generated by keyword
- words on page characterize keywordchoose 1 candidate keyword per cluster
- sort candidate keywords based on page length of form result
- choose keywords in decreasing page-length order until have desired number

19

Generating values

typed text boxes: well-defined set values

- type can be recognized with high precision
 relatively few types over many domains
 - zip code, date, ...
 - often distinctive input names
 - test types using sample of values

Google designers' observations

- # URLs generated proportional to size database, not # possible queries
- semantics not "significant role" in form queries

 exceptions: correlated inputs
 - min-max ranges mine collection of forms for patterns
 - keyword+database selection HARD when choice of databases (select box)
- user still gets fresh data
 - Search result gives URL with embedded DB query

- doesn't work for POST forms

21

23

more observations

- became part of Google Search
 in results of "more than 1000 queries per second" 2009
- impact on "long tail of queries"
 - top 10,000 forms acct for 50% Deep Web results
 - top 100,000 forms acct for 85% Deep Web results
- domain independent approach important
- wish to automatically extract database data (relational) from surfaced pages

22

20

Google deep web crawl for "entity pages"

- · builds on work just seen
- simpler than that work specialized
- · entities versus text content

- examples

- products on shopping sites
- movies on review sites
- structured: well-defined attributes

motivation

- crawl product entities for advertisement use

Major steps: 1: URL template generation • get list of "entity-oriented deep-web sites"

- extract search forms
 - usually home page
- · produce one template per search form
 - observe usually one main text input field
 - set other fields to default

observe get "good behavior" doing this

24

Major steps, 2: Query generation find query words to use in main text field

- use Google query log for site for candidates – site URL clicked? How many times?
- isolate entity keywords from queries

 example: "HP touchpad reviews"
 - identify common patterns to remove
 - analyze query logs using known entities
 - Freebase "community curated" entity keywords

25

- expand using Freebase
 - Freebase entities organized by domain/category

Crawling for deep web sites: Univ Utah DeepPeep Project

- · specializes in Web forms
- goal: index all Web forms
- "tracks 45,000 forms across 7 domains"
- claims 90% content retrieved each indexed site
- · uses focused crawler

Deep Peep focused crawler

· Classifiers

- Pages classified by taxonomy e.g. arts, movies, jobs,
- Form classifier
- Link classifier
 - Want links likely lead to search form interfaces
 eventually
 - · Learn features of good paths
 - Get samples by backwards crawls
 - words in neighborhood of links are features
 - for training: URL, anchor text, nearby text $_{\rm _{27}}$

Next challenges

- Web is MUCH more dynamic than when most of work we've discussed was done and much more interactive
- Other challenges to further extend ability to extract and organize data:
 - Automatically extract data from general pages
 - Combining data from multiple sources
 general, not custom, solution

26