
Compression of the dictionary and posting lists
Summary of class discussion – Part 2

Posting-list compression:
We departed from the treatment in Section 5.3 of Introduction to Information Retrieval
when we discussed bit-level variable-length codes for positive integers.

Notation:

1. string1 ◦ string2 denotes the concatenation of string1 and string2;
2. For any real number v, ⎣v⎦ (read floor of v) denotes the largest integer less

than or equal to v; for non-negative v, this is the same as the integer part of v.
3. For any real number v, ⎡v⎤ (read ceiling of v) denotes the smallest integer

greater than or equal to v.

Let x be a positive integer.

Unary representation of x: 11….10 with x 1’s (same as in Section 5.3).

Elias γ-code for x:

 unary rep. of ⎣log x⎦ ◦ ⎣log x⎦-bit binary rep. of (x-2⎣log x⎦)
(Section 5.3 defines the same code from an alternate point of view, which you might find
clearer.)

Let us explore what the encoding looks like specifically for powers of 2:

x=1; ⎣log 1⎦ = 0.
We need the unary for 0 followed by the 0-bit binary representation of 1-20: 0
x=2; ⎣log 2⎦ = 1.
We need the unary for 1 followed by the 1-bit binary representation of 2-21: 100

x=2k; ⎣log x⎦ = k.
We need the unary for k followed by the k-bit binary representation of 2k -2k:
1…1 0 0…0

 k k

Elias δ-code for x:

Elias γ-code for ⎣log x⎦ ◦ ⎣log x⎦-bit binary rep. of (x-2⎣log x⎦)

or equivalently

unary of ⎣log⎣log x⎦⎦ ◦ ⎣log⎣log x⎦⎦-bit binary rep. of (⎣log x⎦-2⎣
log

⎣
log x

⎦⎦) ◦ ⎣log x⎦-bit
binary rep. of (x-2⎣log x⎦)

The Elias γ-code for x is of length 2*⎣log x⎦ +1, essentially twice the optimal length.
The Elias δ-code for x is of length 2*⎣log (⎣log x⎦) ⎦ +1 + ⎣log x⎦, which has an
overhead in additional bits of essentially 2 times the log of the optimal length (i.e.
2loglogx) – a relatively small quantity for large x.

Example: encoding 5000 = 4096+512+256+128+8
Elias γ-code of (5000)=1111111111110001110001000
Elias δ-code of (5000)= 1110100001110001000

Example: decode 1110010000010001011010100101, encoded with Elias δ-code

1110 010 000010001011010100101
Unary 3 give 23; add following 3-bit binary number 010 = 8+2 = 10 = ⎣log x⎦
111 0 010 0000100010 11010100101
210 +10-bit binary number 0000100010 = 1024 + 34 = 1058 = x
At this point we begin decoding a second number
110 10 100101
Unary 2 give 22; add following 2-bit binary number = 4+2 = 6 = ⎣log y⎦
110 10 100101
26 + 6-bit binary number 100101 = 64 + 37 = 101 = y

I did a “back of the envelope” calculation in class to estimate the compression for the
postings list of a term in a 256 billion document collection if the fraction of the
documents containing the term was 2-10 of the documents in the collection, or
equivalently, 238*2-10=228 documents were on the postings list for the term
(approximating 256 billion as 238). Making assumptions about the uniform distribution
of the term among the documents, we expect gaps of average size 210 between the IDs of
consecutive documents in the postings list. We need 38 bits to represent all the document
IDs, yielding 38*228 bits, or about 1 gigabyte, to list the document IDs in the postings list
without compression. The Elias δ-code to represent gaps of size 210 would take
2*⎣log⎣log 210⎦ ⎦ +1 + ⎣log 210⎦ = 2*3+1+10 = 17 bits. Therefore representing 228 gaps
would take 17* 228 bits, or about 512 megabytes. (The extra bits to represent the full ID
of the first document on the list are negligible.) This gives about a 2:1 compression. Note
that the smaller the gaps, the more we can save over the use of full 38-bit IDs for all the
documents on the postings list.

Compression numbers we looked at in class:

TREC-3 collection (1994) as compressed by Moffat and Zobel †:
1.7 million 1-KB documents for 1.7 GB of document data
538,244 terms
Inverted index size without compression : 1.1 GB

Entries of the posting list for a term contain only (docID, term frequency in doc)
pairs, not a list of occurrences within the document.

Compressed: 184 MB, a 6:1 compression
Gaps between document IDs in the posting lists are compressed used the Golomb
code (see supplementary material below). (For this application, the Golomb code
was shown to be slightly better than the Elias δ-code, which is better than the
Elias γ-code.) The term frequency values are compressed using the Elias γ-code.

Reuters RCV1collection (1996-1997) (see Section 5.3.2 of Intro. to Info. Retrieval.)
806,791 docs in ~ 1GB (~1.25 KB/doc)
391,623 terms
400MB postings lists uncompressed
116MB compressed by variable byte encoding, ~ 3.5:1 compression
101 MB compressed with Elias γ-code, ~ 4:1 compression

Compare more recent number, but unknown compression:

2004 Web crawl by Ntoulas & Cho (SIGIR 07)
130 million pages in 1.9TB (15KB/doc)
inverted index 1.2 TB

Google Caffeine 2011
index ~ 10PB

Skip pointers:
The basic idea of skip pointers can be found in Section 2.3 of Introduction to Information
Retrieval. Our discussion added the use of gaps to represent documents in the chain of
skip pointers. The original reference for all these ideas is the paper by Moffat and
Zobel†.

Example:

Sequence of document IDs in a postings list:

5 8 12 13 15 18 23

Encoded using gaps:

5 +3 +4 +1 +2 +3 +5

add skip pointers to original list:

5 8 12 13 15 18 23
|_________↑ |_________↑

Encoded using one sequence of gaps for skips and sequences for gaps between skips:
5 +3 +4 +8 +2 +3 +10
|__________↑ |__________↑

Supplementary material (you are not responsible for this material):
In class, I briefly mentioned the Golomb code, which is similar in structure to Elias γ-
code. (This is easily seen from the class presentation but not from the textbook
presentation.)

Golomb code for x:

unary rep. of ⎣(x/b)⎦ ◦ ⎡log b⎤-bit binary rep. of (x - ⎣(x/b)⎦*b)

The Golomb code for x is of length ⎣(x/b)⎦ +1 + ⎡log b⎤. This is a slightly simplified
version of the Golomb code; the full version is one bit shorter in some instances.
Quantity b is a parameter that must be chosen for each application. In the textbook
Modern Information Retrieval††, authors Baeza-Yates and Ribeiro-Neto claim that for
compressing a sequence of gaps representing the postings list of documents for a term j,
b = 0.69(N/nj) works well. N is the total number of documents, and nj is the document
frequency for term j (as used in tf-idf weighting for the vector model). The quantity N/nj
is an estimate of gap size. Note that b changes for each term in the lexicon, and all the
documents must be processed to determine nj before compressing the postings lists.

† A. Moffat and J. Zobel, Self-indexing inverted files for fast text retrieval, ACM Transactions on
Information Systems, Vol. 14, No. 4 (Oct. 1996), pgs 349-379. Link provided on “Schedule and
Assignments” Web page.

†† Baeza -Yates, Ricardo and Ribeiro-Neto, Berthier, Modern Information Retrieval, Addison-
Wesley, 1999.

