COS 511: Theoretical Machine Learning

Sample size bounds, growth function, VC dimension

Problem 1

[10] As on Problem 1 on Homework $\# 1$, let $X=\mathbb{R}$, and let \mathcal{C}_{s} be the class of concepts defined by unions of s intervals. Compute the VC-dimension of \mathcal{C}_{s} exactly.

Problem 2

[15] For $i=1, \ldots, n$, let \mathcal{G}_{i} be a space of concepts ($\{0,1\}$-valued functions) defined on some domain X, and let \mathcal{F} be a space of concepts defined on $\{0,1\}^{n}$. (That is, each $g_{i} \in \mathcal{G}_{i}$ maps X to $\{0,1\}$, and each $f \in \mathcal{F}$ maps $\{0,1\}^{n}$ to $\{0,1\}$.) Let \mathcal{H} be the space of all concepts $h: X \rightarrow\{0,1\}$ of the form

$$
h(x)=f\left(g_{1}(x), \ldots, g_{n}(x)\right)
$$

for some $f \in \mathcal{F}, g_{1} \in \mathcal{G}_{1}, \ldots, g_{n} \in \mathcal{G}_{n}$.
Give a careful argument proving that

$$
\Pi_{\mathcal{H}}(m) \leq \Pi_{\mathcal{F}}(m) \cdot \prod_{i=1}^{n} \Pi_{\mathcal{G}_{i}}(m) .
$$

Problem 3

[15] Show that Sauer's Lemma is tight. That is, for each $d=0,1,2, \ldots$, give an example of a class \mathcal{C} with VC-dimension equal to d such that for each m,

$$
\Pi_{\mathcal{C}}(m)=\sum_{i=0}^{d}\binom{m}{i} .
$$

Problem 4

This problem explores another general method for bounding the error when the hypothesis space is infinite.

Some algorithms output hypotheses that can be represented by a small number of examples from the training set. For instance, suppose the domain is \mathbb{R} and we are learning a half-line of the form $x \geq a$ where a defines the half-line. A simple algorithm chooses the left most positive training example a and outputs the corresponding half-line, which is clearly consistent with the data. Thus, in this case, the hypothesis can be represented by a single training example.

More formally, let F be a function mapping labeled examples to concepts, and assume that algorithm A, when given training examples $\left(x_{1}, c\left(x_{1}\right)\right), \ldots,\left(x_{m}, c\left(x_{m}\right)\right)$ labeled by some unknown $c \in \mathcal{C}$, chooses some $i_{1}, \ldots, i_{k} \in\{1, \ldots, m\}$ and outputs the consistent hypothesis $h=F\left(\left(x_{i_{1}}, c\left(x_{i_{1}}\right)\right), \ldots,\left(x_{i_{k}}, c\left(x_{i_{k}}\right)\right)\right)$. In a sense, the algorithm has "compressed" the sample down to a sequence of just k of the m training examples. (We assume throughout that $m>k$.)
a. [5] Give such an algorithm for axis-aligned hyper-rectangles in \mathbb{R}^{n} with $k=O(n)$. (An axis-aligned hyper-rectangle is a set of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$, and the corresponding concept, as usual, is the binary function that is 1 for points inside the rectangle and 0 otherwise. For $n=2$, this is the class of rectangles used repeatedly as an example in class.) Your algorithm should run in time polynomial in m and n.
b. [15] Returning to the general case, assume as usual that the examples are chosen at random from some distribution D. Also assume that the size k is fixed. Argue carefully that the error of the output hypothesis h, with probability at least $1-\delta$, satisfies the bound:

$$
\operatorname{err}_{D}(h) \leq O\left(\frac{\ln (1 / \delta)+k \ln m}{m-k}\right) .
$$

