
1 

4.2  Sorting and Searching 

2 

Sequential Search 

Sequential search.  Scan through array, looking for key. 
  Search hit:  return array index. 
  Search miss:  return -1. 

public static int search(String key, String[] a) { 
for (int i = 0; i < a.length; i++) 
      if (a[i].compareTo(key) == 0) 
         return i; 
   return -1; 
 
} 

3 

Search Client:  Exception Filter 

Exception filter.  Read a sorted list of strings from a whitelist file, 
then print out all strings from standard input not in the whitelist. 
 
 
 
 

public static void main(String[] args) { 
   In in = new In(args[0]); 
   String s = in.readAll(); 
   String[] words = s.split("\\s+"); 
   while (!StdIn.isEmpty()) { 
      String key = StdIn.readString(); 
      if (search(key, words) == -1) 
         StdOut.println(key); 
      } 
   } 
} 

4 

Searching Challenge 1 

Q.  A credit card company needs to whitelist 10 million customer 
account numbers, processing 1,000 transactions per second. 
 

Using sequential search, what kind of computer is needed? 

A.  Toaster 
B.  Cellphone 
C.  Your laptop 
D.  Dual-core server 
E.  Supercomputer 
F.  Google server farm 

5 

Binary Search 

6 

Twenty Questions 

Intuition.  Find a hidden integer. 



2 

7 

Binary Search 

Main idea. 
  Sort the array (stay tuned). 
  Play "20 questions" to determine index with a given key. 

Ex.   Dictionary, phone book, book index, credit card numbers, … 
 
 
 
Binary search.  
  Examine the middle key. 
  If it matches, return its index. 
  Otherwise, search either the left or right half. 

 

8 

Binary Search:  Java Implementation 

Invariant.  Algorithm maintains a[lo] ≤ key ≤  a[hi-1]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Java library implementation:  Arrays.binarySearch() 
 

public static int search(String key, String[] a) { 
   return search(key, a, 0, a.length); 
} 
 
public static int search(String key, String[] a, int lo, int hi) { 
   if (hi <= lo) return -1; 
   int mid = (hi + lo) / 2; 
   int cmp = a[mid].compareTo(key); 
   if      (cmp > 0) return search(key, a, lo, mid); 
   else if (cmp < 0) return search(key, a, mid+1, hi); 
   else              return mid; 
} 

9 

Binary Search:  Mathematical Analysis 

Analysis.  To binary search in an array of size N: do one compare, 
then binary search in an array of size N / 2. 
 

 N  → N / 2 → N / 4  → N / 8  →  …  →  1  
 
 
Q.  How many times can you divide a number by 2 until you reach 1? 
A.  log2 N. 
 
 
 
 
 
 

1 ���
2 → 1	



4 → 2  → 1	


8 → 4 → 2  → 1	



16 → 8 → 4 → 2  → 1	


32 → 16 → 8 → 4 → 2  → 1	



64 → 32  → 16 → 8 → 4 → 2  → 1	


128 → 64 → 32  → 16 → 8 → 4 → 2  → 1	



256 → 128 → 64 → 32  → 16 → 8 → 4 → 2  → 1���
 512 → 256 → 128 → 64 → 32  → 16 → 8 → 4 → 2  → 1	



1024 → 512 → 256 → 128 → 64 → 32  → 16 → 8 → 4 → 2  → 1	



10 

Searching Challenge 2 

Q.  A credit card company needs to whitelist 10 million customer 
account numbers, processing 1,000 transactions per second. 
 

Using binary search, what kind of computer is needed? 

A.  Toaster 
B.  Cell phone 
C.  Your laptop 
D.  Dual-core server 
E.  Supercomputer 
F.  Google server farm 

Sorting 

12 

Sorting 

Sorting problem.  Rearrange N items in ascending order. 

Applications.  Statistics, databases, data compression, bioinformatics, 
computer graphics, scientific computing, (too numerous to list),  ...  

Hanley 

Haskell 

Hauser 

Hayes 

Hong 

Hornet 

Hsu 

Hauser 

Hong 

Hsu 

Hayes 

Haskell 

Hanley 

Hornet 



3 

13 

Insertion Sort 

14 

Insertion sort. 
  Brute-force sorting solution. 
  Move left-to-right through array. 
  Exchange next element with larger elements to its left, one-by-one. 

 
 

Insertion Sort 

15 

Insertion sort. 
  Brute-force sorting solution. 
  Move left-to-right through array. 
  Exchange next element with larger elements to its left, one-by-one. 

 
 

Insertion Sort 

16 

Insertion Sort:  Java Implementation 

public class Insertion { 
 
   public static void sort(String[] a) { 
      int N = a.length; 
      for (int i = 1; i < N; i++) 
         for (int j = i; j > 0; j--) 
            if (a[j-1].compareTo(a[j]) > 0) 
               exch(a, j-1, j); 
            else break; 
   } 
 
   private static void exch(String[] a, int i, int j) { 
      String swap = a[i]; 
      a[i] = a[j]; 
      a[j] = swap; 
   } 
} 

17 

Insertion Sort:  Mathematical Analysis 

Worst case.  [descending] 
  Iteration i requires i comparisons. 
  Total = (0 + 1 + 2 + ... + N-1)  ~  N 2 / 2 compares. 

 

 
Average case.  [random] 
  Iteration i requires i / 2 comparisons on average. 
  Total = (0 + 1 + 2 + ... + N-1) / 2  ~  N 2 / 4 compares 

E F G H I J D C B A 

A C D F H J E B I G 

i	



i	



18 

Insertion Sort:  Empirical Analysis 

Observation.  Number of compares depends on input family. 
  Descending: ~ N 2 / 2. 
  Random: ~ N 2 / 4. 
  Ascending: ~ N. 

0.001

0.1

10

1000

100000

10000000

1000 10000 100000 1000000

Input Size

C
om

pa
rs

io
ns

 (
m

ill
io

ns
)

Descendng

Random

Ascending



4 

19 

Sorting Challenge 1 

Q.  A credit card company sorts 10 million customer account numbers, 
for use with binary search.  
 

Using insertion sort, what kind of computer is needed? 

A.  Toaster 
B.  Cell phone 
C.  Your laptop 
D.  Supercomputer 
E.  Google server farm 

20 

Insertion Sort:  Lesson 

Lesson.  Supercomputer can't rescue a bad algorithm. 

1 second 

1 day 

Million 

instant 

instant 

Thousand Billion Comparisons 
Per Second Computer 

3 centuries 107 laptop 

2 weeks 1012 super 

21 

Moore's Law 

Moore's law.  Transistor density on a chip doubles every 2 years. 
 
Variants.  Memory, disk space, bandwidth, computing power per $. 
 

http://en.wikipedia.org/wiki/Moore's_law 

23 

Mergesort 

24 

Mergesort 

Mergesort algorithm. 
  Divide array into two halves. 
  Recursively sort each half. 
  Merge two halves to make sorted whole. 

25 

Mergesort:  Example 



5 

26 

Merging 

Merging.  Combine two pre-sorted lists into a sorted whole. 
 
How to merge efficiently?  Use an auxiliary array. 

27 

Merging 

Merging.  Combine two pre-sorted lists into a sorted whole. 
 
How to merge efficiently?  Use an auxiliary array. 

String[] aux = new String[N]; 
// merge into auxiliary array 
int i = lo, j = mid; 
for (int k = 0; k < N; k++) { 
   if      (i == mid) aux[k] = a[j++];  //left side of a done already 
   else if (j == hi)  aux[k] = a[i++];  //right side of a done already 
   else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++]; 
   else                               aux[k] = a[i++]; 
} 
 
// copy back from aux into a 
for (int k = 0; k < N; k++) { 
   a[lo + k] = aux[k]; 
}  

28 

public class Merge { 
 
   public static void sort(String[] a) { 
      sort(a, 0, a.length); 
   } 
 
   // Sort a[lo, hi). 
   public static void sort(String[] a, int lo, int hi) { 
      int N = hi - lo; 
      if (N <= 1) return; 
 
      // recursively sort left and right halves 
      int mid = lo + N/2; 
      sort(a, lo, mid);   //sort a[lo, mid) 
      sort(a, mid, hi);   //sort a[mid, hi) 
 
      // merge sorted halves (see previous slide) 
   } 
 
} 

Mergesort:  Java Implementation 

lo mid hi 

10 11 12 13 14 15 16 17 18 19 

29 

Analysis.  To mergesort array of size N, mergesort two subarrays 
of size N / 2, and merge them together using ≤ N compares. 
 

T(N)	



T(N / 2)	

T(N / 2)	



T(N / 4)	

T(N / 4)	

T(N / 4)	

 T(N / 4)	



T(2)	

 T(2)	

 T(2)	

 T(2)	

 T(2)	

 T(2)	

 T(2)	

 T(2)	



N	



T(N / 2k)	



2 (N / 2)	



4 (N / 4)	



N / 2 (2)	



.���

.���

.	



log2 N	



N log2 N	



we assume N is a power of 2 (for simplicity, NlgN bound holds regardless) 

Mergesort:  Mathematical Analysis 

30 

Mergesort:  Mathematical Analysis 

Mathematical analysis. 
 
 
 
 
 
 
 
 
Validation.  Theory agrees with observations. 

N log2 N	

average 

1/2 N log2 N	



N log2 N	



comparisons analysis 

worst 

best 

1,279 million 1,216 million 50 million 

485 million 460 million 20 million 

133 thousand 

predicted actual N 

120 thousand 10,000 

31 

Sorting Challenge 2 

Q.  A credit card company sorts 10 million customer account numbers, 
for use with binary search.  
 

Using mergesort, what kind of computer is needed? 

A.  Toaster 
B.  Cell phone 
C.  Your laptop 
D.  Supercomputer 
E.  Google server farm 



6 

33 

Mergesort:  Lesson 

Lesson.  Great algorithms can be more powerful than supercomputers. 

N = 1 billion 

2 weeks 

3 centuries 

Insertion Mergesort Compares 
Per Second Computer 

3 hours 107 laptop 

instant 1012 super 

34 

Longest Repeated Substring 

35 

Longest repeated substring.  Given a string, find the longest substring 
that appears at least twice. 

    

Brute force. 
  Try all indices i and j for start of possible match. 
  Compute longest common prefix for each pair (quadratic+). 
 

 
 
 
Applications.  Bioinformatics, data compression, … 

Redundancy Detector 

a a c a a g t t t a c a a g c 

i	

 j	



a a c a a g t t t a c a a g c 

37 

Longest repeated substring.  Given a string, find the longest substring 
that appears at least twice. 

    

Brute force. 
  Try all indices i and j for start of possible match. 
  Compute longest common prefix (LCP) for each pair. 
 

 
Mathematical analysis. 
  All pairs:  0 + 1 + 2 + …  + N-1 ~  N2/2 calls on LCP. 
  Way too slow for long strings. 

Longest Repeated Substring:  Brute-Force Solution 

a a c a a g t t t a c a a g c 

a a c a a g t t t a c a a g c 

i	

 j	



38 

Longest Repeated Substring:  A Sorting Solution 

sort suffixes to bring repeated substrings together 
form suffixes 

compute longest prefix 
between adjacent suffixes 

39 

Longest Repeated Substring:  Java Implementation 

Suffix sorting implementation. 
 
 
 
 
  
 
Longest common prefix.  lcp(s, t) 
  Longest string that is a prefix of both s and t. 
  Ex:   lcp("acaagtttac", "acaagc") = "acaag". 

Easy to implement (you could write this one). 
 
Longest repeated substring.  Search only adjacent suffixes. 
 
 

int N = s.length(); 
String[] suffixes = new String[N]; 
for (int i = 0; i < N; i++) 
   suffixes[i] = s.substring(i, N); 
Arrays.sort(suffixes); 

String lrs = ""; 
for (int i = 0; i < N-1; i++) { 
   String x = lcp(suffixes[i], suffixes[i+1]); 
   if (x.length() > lrs.length()) lrs = x; 
} 



7 

40 

String representation. 
  A String is an address and a length. 
  Characters can be shared among strings. 
  substring() computes address and length. 

 
 
 
 
Consequences. 

  substring() is constant-time operation (instead of linear). 
  Creating suffixes takes linear space (instead of quadratic). 
  Running time of LRS is dominated by the string sort. 

OOP Context for Strings 

a 

D0 

a 

D1 

c 

D2 

a 

D3 

a 

D4 

g 

D5 

t 

D6 

t 

D7 

t 

D8 

a 

D9 

c 

DA 

a 

DB 

D0 

A0 

15 

A1 
s 

length address 

D5 

B0 

10 

B1 
t 

a 

DC 

g 

DD 

c 

DE 

s = "aacaagtttacaagc"; 

t = s.substring(5, 15); 

does not copy chars 

41 

Sorting Challenge 4 

Q.  Four researchers A, B, C, and D are looking for long repeated 
sequences in a genome with over 1 billion characters.  
 

Which one is more likely to find a cure for cancer? 

A.  has a grad student to do it. 
B.  uses brute force (check all pairs) solution. 
C.  uses sorting solution with insertion sort. 
D.  uses sorting solution with mergesort. 

42 

Longest Repeated Substring:  Empirical Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lesson.  Sorting to the rescue; enables new research. 

216 0.25 sec 37 sec 18,369 Amendments 

73 0.14 sec 0.6 sec 2,162  LRS.java 

58 1.0 sec 3958 sec 191,945 Aesop's Fables 

12,567 61 sec 2 months † 7.1 million  Chromosome 11 

84 sec 

34 sec 

7.6 sec 

Suffix Sort 

14 4 months † 10 million  Pi 

11 20 days † 4.0 million  Bible 

79 43 hours † 1.2 million  Moby Dick  

Brute Length Characters Input File 

 †  estimated 

43 

Summary 

Binary search.  Efficient algorithm to search a sorted array. 
 
Mergesort.  Efficient algorithm to sort an array. 
 
Applications.  Many many applications are enabled by fast 
sorting and searching. 


