A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.1 SYMBOL TABLES

» AP/

» elementary implementations

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.1 SYMBOL TABLES

» AP/

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Symbol tables

Key-value pair abstraction.
e |Insert a value with specified key.
« Given a key, search for the corresponding value.

Ex. DNS lookup.
e Insert domain name with specified IP address.
e Given domain name, find corresponding IP address.

domain name IP address

WWW.CS.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WWW.Simpsons.com 209.052.165.60

T T

key value

Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address domain name IP address
reverse DNS find domain name IP address domain name
genomics find markers DNA string known positions

file system find file on disk filename location on disk

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.
Generalizes arrays. Keys need not be between 0 and N—1.

Language support.
« External libraries: C, VisualBasic, Standard ML, bash,
e Built-in libraries: Java, C#, C++, Scala, ...
o Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

/ / /

every array is an every object is an table is the only
associative array associative array primitive data structure

hasNiceSyntaxForAssociativeArrays["Python"] true

hasNiceSyntaxForAssociativeArrays["Java"] false

legal Python code

Basic symbol table API

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

STQO create an empty symbol table
void put(Key key, Value val) put key-value pair into the table «<—— alkey] = val;
Value get(Key key) value paired with key <«—— alkey]
boolean contains(Key key) is there a value paired with key?
void delete(Key key) remove key (and its value) from table

Tterable<Key> keys() all the keys in the table

Conventions

e Values are not null. <«— Javaallows null value
« Method get() returns null if key not present.
e Method put() overwrites old value with new value.

Intended consequences.
« Easy to implement contains().

public boolean contains(Key key)
{ return get(key) != null; }

« Can implement lazy version of delete().

public void delete(Key key)
{ put(key, null); }

Keys and values

Value type. Any generic type.

specify Comparable in API.

Key type: several natural assumptions. /

e ASsume
e Assume
e ASsume

Keys are Comparable, use compareTo().
Keys are any generic type, use equals() to test equality.

Keys are any generic type, use equals() to test equality;

use hashCode() to scramble key.

\ built-in to Java

(stay tuned)

Best practices. Use immutable types for symbol table keys.

« Immutable in Java: Integer, Double, String, java.io.File, ...

« Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

o Reflexive: x.equals(x) is true. equivalence

relation

o Symmetric: x.equals(y) iff y.equals(x).
e Transitive: if x.equals(y) and y.equals(z), then x.equals(z). -

e Non-null: x.equals(null) is false.

do x and y refer to

/ the same object?

Default implementation. (x == y)
Customized implementations. Integer, Double, String, java.io.File, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy.

public class Date implements Comparable<Date>

{

private final int month;
private final int day;
private final int year;

public boolean equals(Date that)

{
if (this.day = that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false;
return true;

¥

check that all significant
fields are the same

10

Implementing equals for user-defined types

Seems easy, but requires some care.

public final class Date implements Comparable<Date>

{

private final int month;
private final int day;
private final int year;

public boolean equals(Object y)

{
if (y == this) return true;
1T (y == null) return false;
if (y.getClass() != this.getClass(Q))
return false;
Date that = (Date) vy;
1f (this.day = that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false;
return true;
}

1

1

1

!

typically unsafe to use equals() with inheritance
(would violate symmetry)

must be Object.
Why? Experts still debate.

optimize for true object equality

check for null

objects must be in the same class
(religion: getClass() vs. instanceof)

cast is guaranteed to succeed

check that all significant
fields are the same

11

Equals design

"Standard” recipe for user-defined types.

o Optimization for reference equality.

e Check against null.
e Check that two objects are of the same type and cast.

« Compare each significant field:

— if field is a primitive type, use == D a—

— if field is an object, use equals() «—

— if field is an array, apply to each entry «<——
Best practices. -

but use Double.compare() with double
(or otherwise deal with -0.0 and NaN)

apply rule recursively

can use Arrays.deepEquals(a, b)
but not a.equals(b)

e.g., cached Manhattan distance

« No need to use calculated fields that depend on other fields.

« Compare fields mostly likely to differ first.

e Make compareTo() consistent with equals().

\

x.equals(y) ifand only if (x.compareTo(y) == 0)

12

ST test client for traces

Build ST by associating value i with i# string from standard input.

public static void main(String[] args)

{

ST<String, Integer> st = new ST<String, Integer>();

for (int 1 = 0; !StdIn.isEmpty(); i++)

{

String key = StdIn.readString(Q);
, st.put(key, 1); output
for (String s : st.keys())
StdOut.printin(s + " " + st.get(s)); 8

} 4

12

11

keys S E A R CH E X A M P L E
values 0 1 2 3 4 5 6 7 8 910 11 12

10

X LN X T =2 rTmMmaMANO >
O

13

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input
and print out one that occurs with highest frequency.

% more tinyTale.txt

1t was the best of times

it was the worst of times

1t was the age of wisdom

1t was the age of foolishness
it was the epoch of belief

it was the epoch of incredulity
1t was the season of light

1t was the season of darkness
1t was the spring of hope

1t was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt <«——— tiny example
it 10 (60 words, 20 distinct)

real example

% java FrequencyCounter 8 < tale.txt D E— o
(135,635 words, 10,769 distinct)

business 122

real example

% java FrequencyCounter 10 < leipziglM.txt €< ——
J G y Pz19 (21,191,455 words, 534,580 distinct)

government 24763

Frequency counter implementation

public class FrequencyCounter

{

public static void main(String[] args)

{

int minlen = Integer.parseInt(args[0]);

ST<String, Integer> st = new ST<String, Integer>(Q); <

while (!StdIn.isEmpty())

{
Stri ng word = StdIn.readStri ng() ; ignore short strings
1f (word.length() < minlen) continue; <
if (Ist.contains(word)) st.put(word, 1);
else st.put(word, st.get(word) + 1);

}

String max = "";

st.put(max, 0);

for (String word : st.keys()) <

1f (st.get(word) > st.get(max))
max = word;
StdOut.printlin(max + " " + st.get(max));

create ST

read string and
update frequency

print a string
with max freq

15

3.1 SYMBOL TABLES

» elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

key value first
y red nodes

S O S O are new
E 1 El1 /S 0 black nodes
ateaccess}(led
A 2 Al2—E|1 S|10 /znsearc
R 3 R|3—A|?2 E|l1l S|10
C 4 Cl4—|R|3 A2 E|1l S10
ircled entri
Hos [H]sF{c]a4 - R[3}{A[2~ E[1S [0l thanged vatues
—T
E 6 |H|5(C|4{R|[3~A|2]—~E[6)
X 7 X|7F>H|S5 Cl4 R|3 Al2 E|©6 S|10
gray nodes
A 8 X7 Hi> Cl4 R|3 A are untouched
M 9 M9 X|7 H|5 Cl4 R|3 Al8 E| 6 S10
P 10 Pl10F—{M|9 X|7 H|5 Cl4 R|3 Al8 E|6 S|10
L 11 L [{11—{ P {10 M9 X\|7 H|5 Cl4 R|3 Al8 E|© S|10
E12 |L|11—{P |10 M|9F=X| 7~ H|5—~C|4}—~{R|3}|—{A|8 = E[12

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

guarantee average case
key

ST implementation :
interface
search insert search hit insert

sequential search
(unordered list)

N N N/2 N equals()

Challenge. Efficient implementations of both search and insert.

18

Binary search in an ordered array

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

keys|[]
O 1 2 3 4 5 6

C EHLMWPR S X

successful search for P

To h1 m -
0O 9 4 A CE H L MUPZ R S X entries in black
5 9 7 M P R S X/areaﬂo..h'i]
5 6 5 M P RO

6 6 6 P o~ entry in red is a[m]

™ loop exits with keys[m] = P: return6

unsuccessful search for Q

To hi m

0O 9 4 A C E HL M P R S X

5 9 7 M P R S X

5 6 5 M P

7 6 6 P
™

loop exits with 1o > hi: return 7

19

Binary search: Java implementation

public Value get(Key key)

{
1f (isEmpty()) return null;

int i = rank(key);
if (i < N && keys[i].compareTo(key) == 0) return vals[i];
else return null;

private int rank(Key key) number of keys < key

{
int 1o = 0, hi = N-1;
while (lo <= hi)

{
int mid = 1o + (hi - 1o) / 2;
int cmp = key.compareTo(keys[mid]);
1f (cmp < 0) hi = mid - 1;
else if (cmp > 0) 1o = mid + 1;
else return mid;

}

return lo;

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

key value
S O
E 1
A 2
R 3
C 4
H 5
E 6
X 7
A 8
M 9
P 10
L 11
E 12

keys[]

1 2 3

> m unh O

R S
C E R
H

A C E H

4

S

5

6

/7 8 9

entries in red

E S _— were inserted

entries in gray

R S / did not move

-

X

wn
>

O 00O N N OO LT A W IN R Z

B R
o o

vals|[]
O 1 2 3 4 5 6 7 8 9
0
1 0 entries in black
moved to the right
2 1 0 /
3 0
4 1 3 O
5 3 0 circled entries are
@ ~— changed values
7
9 3 0 7
10 3 O
11 10 3
8 412 5 11 9 10 3

21

Elementary ST implementations: summary

guarantee average case
key

ST implementation :
interface
search insert search hit insert

sequential search
(unordered list)

N N N/2 N equals()

binary search
(ordeer array) log N @ log N @ compareTo()

Challenge. Efficient implementations of both search and insert.

22

3.1 SYMBOL TABLES

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Examples of ordered symbol table API

keys

values

min()—>-09:00:00 Chicago
09:00:03

09:00:
get(09:00:13) 9:00"

:01:
:03:
:10:
:10:
125
:19:
:19:
:05
43
: 54
:25:
:35:
:36:
137

floor(09:05:00) —

select(7)—

keys(09:15:00, 09:25:00)—

ceiling(09:30:00)—

max () —

s1ze(09:15:00, 09:25:00) 1s 5
rank (09:10:25) is 7

09
09
09
09
09
09
09
09
09
09
09
09
09
09

14

21
122
122

Phoenix
Houston

59 Chicago

10
13
11
25

32
46

52
21
14
44

Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

24

Ordered symbol table API

public class ST<Key(Cextends Comparab]eEEEiE) Value>

Key min()

Key max()

Key floor(Key key)
Key ceiling(Key key)
int rank(Key key)

Key select(int k)

void deleteMin()

void deleteMax()

int size(Key lo, Key hi)

Tterable<Key> keys(Q)

ITterable<Key> keys(Key lo, Key hi)

smallest key
largest key
largest key less than or equal to key
smallest key greater than or equal to key
number of keys less than key

key of rank k

delete smallest key

delete largest key

number of keys between lo and hi
all keys, in sorted order

keys between lo and hi, in sorted order

25

Binary search: ordered symbol table operations summary

sequential binary
search search

search N log N

insert / delete N @

min / max N 1
floor / ceiling N log N
rank N log N

select N 1

ordered iteration Nlog N N

order of growth of the running time for ordered symbol table operations

26

A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

» BSTs

» ordered operations

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

» BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.
root

a left link /

a subtree >
A binary tree is either: AN
* Empty; q@ right child
o Two disjoint binary trees (left and right). \T/ of root
null links

parent of A and R

Symmetric order. Each node has a key, - key
and every node’s key is: of E ~~—__
 Larger than all keys in its left subtree. O value]
« Smaller than all keys in its right subtree. o 0 iR

/ \

keys smaller than € keys larger than E

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:
« A Key and a Value.
« A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node(Key key, Value val)
{
this.key = key;
this.val = val;

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

e ~.
lTeft right
BST with smaller keys BST with larger keys

Binary search tree

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>

{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ }

public void delete(Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

root of BST

BST search: Java implementation

Get. Return value corresponding to given key, or nul1 if no such key.

public Value get(Key key)

{
Node x = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key. i L

Search for key, then two cases:

« Key in tree = reset value. search for L ends

. at this null link
« Key not in tree = add new node.

create new node —» @
N
/

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,

public void put(Key key, Value val) recursive code;
|
{ root = put(root, key, val); 1} read carefully!

private Node put(Node x, Key key, Value val)

{
1T (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
1f (cmp < 0)
X.left = put(x.left, key, val);
else 1if (cmp > 0)
X.right = put(x.right, key, val);
else
x.val = val;
return X;
¥

Cost. Number of compares is equal to 1 + depth of node.

10

Tree shape

« Many BSTs correspond to same set of keys.
« Number of compares for search/insert is equal to 1 + depth of node.

best case m typical case worst case

© (S)
(A (E) (R (X)

Bottom line. Tree shape depends on order of insertion.

11

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255

max = 16
avg = 9.1
opt=7.0

L —

12

Sorting with a binary heap

Q. What is this sorting algorithm?

0. Shuffle the array of keys.
1. Insert all keys 1nto a BST.

2. Do an inorder traversal of BST.

A. It's not a sorting algorithm (if there are duplicate keys)!

Q. OK, so what if there are no duplicate keys?
Q. What are its properties?

13

Correspondence between BSTs and quicksort partitioning

0 1 2 3 45 6 7 8 9 10 11 12 13
P S EUDOMYTHTI CA L
P S EUDOMYTHTI CA L
HLEADOMCIPTYUS
D CEAHOML I Q
A CDE
' o 5
C
E oG
I M L O
M L (O (M)
L M
L o
S T U Y
S
U
ACDEH I LMOTPSTU.Y

Remark. Correspondence is 1-1 if array has no duplicate keys.

14

BSTs: mathematical analysis

Proposition. If Ndistinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is ~2 In V.
Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order,
expected height of tree is ~4.311 In V.
How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT

Let H, be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107...
and 8 = 1.95... such that E(H,) = alogn — Bloglogn +
O(1), We also show that Var(H,) = O(1).

But... Worst-case height is M.
[exponentially small chance when keys are inserted in random order]

15

ST implementations: summary

guarantee average case
operations

on keys

implementation

search insert search hit insert

sequential search

2 I
2 2 I
2 I

(unordered list) 2 equals)
binary search lo N lo N N compareTo()
(ordered array) g & ? >

BST N N 1.391g N 1.391g N compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 In N?

16

3.2 BINARY SEARCH TREES

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

18

Floor and ceiling

Floor. Largest key < a given key.
Ceiling. Smallest key = a given key.

floor(G)

floor(D)

Q. How to find the floor / ceiling?

ceiling(Q)

19

Computing the floor

Case 1. [k equals the key in the node] finding floor (G)
The floor of k is k.

G is less than S so

m floor (G) must be
on the left

Case 2. [kis less than the key in the node]
The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node]
The floor of k£ is in the right subtree

G is greater than E so
floor (G) could be

(if there is any key < k in right subtree); P Dy
otherwise it is the key in the node. ®
/
v
floor (G)in left

subtree isnul

©®

result

Computing the floor

public Key floor(Key key)

{
Node x = floor(root, key);
1f (x == null) return null;
return X.key;

}

private Node floor(Node x, Key key)
{

1f (x == null) return null;
int cmp = key.compareTo(x.key);

if (cmp == 0) return Xx;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

1if (t !'= null) return t;
else return Xx;

finding floor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/

yd
floor (G)in left
subtree is nulT

©®

result

21

Rank and select

Q. How to implement rank() and select() efficiently?

A. In each node, we store the number of nodes in the subtree rooted at

that node; to implement size(), return the count at the root.

node count

22

BST implementation: subtree counts

private class Node

{
private Key key;
private Value val;
private Node Tleft;
private Node right;
private int count;

| X

public 1nt si1ze()
{ return size(root); }

private 1nt size(Node x)
{
if (x == null) return 0;

return x.count?\\\\ ok to call
} when x is null

number of nodes in subtree

private Node put(Node x, Key key, Value val)

{

initialize subtree

/ count to 1

if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);

1f (cmp < 0) x.left
else if (cmp > 0) x.right
else x.val =

= put(x.left,

key, val);
put(x.right, key, val);

val;

x.count = 1 + size(x.left) + size(x.right);

return X;

23

Rank

Rank. How many keys < k£?
node count

Easy recursive algorithm (3 cases!)

public 1nt rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{

1f (x == null) return O;
int cmp = key.compareTo(x.key);

1t (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

Inorder traversal

o Traverse left subtree.
« Enqueue key.
o Traverse right subtree.

public Iterable<Key> keys()
{

BST
Queue<Key> g = new Queue<Key>();
inorder(root, q); key | val
return q; */////

1 /

lTeft right

private void inorder(Node x, Queue<Key> q)

{ BST with smaller keys BST with larger keys
-! f (X == null) return; smaller keys, in order key larger keys, in order
inorder(x.left, q);
g.enqueue(x.key); ™~

all keys, in order

inorder(x.right, q);

Property. Inorder traversal of a BST yields keys in ascending order.

25

BST: ordered symbol table operations summary

se ial '
quentia binary BST
search search

search N lg N h

insert N N h

min / max N 1 h

floor / ceiling N lg N h

rank N lg N h

select N 1 h

ordered iteration Nlog N N N

order of growth of running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

26

3.2 BINARY SEARCH TREES

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ST implementations: summary

guarantee average case
ordered

implementation
: : : ops?
search | insert delete | search hit insert delete

sequential search
(linked list)

N N N N N N

binary search
(ordered array)

BST N N N 1391gN 1391gN v

lg N N N Ig N % N 1 N v

Next. Deletion in BSTs.

operations
on keys

equals()

compareTo()

compareTo()

28

BST deletion: lazy approach

To remove a node with a given key:
e Set its value to nulT.
o Leave key in tree to guide search (but don't consider it equal in search).

delete |

Cost. ~21In N' per insert, search, and delete (if keys in random order),
where N’ is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

29

Deleting the minimum

To delete the minimum key:

o Go left until finding a node with a null left link. goleft until

« Replacet

« Update subtree counts.

reaching null

hat node by its right link. left link

\

return that
node’s right link

AN

public void deleteMin() T
_ : . available for
{ root = deleteMin(root); } gm%@xcdé;wn
private Node deleteMin(Node x) LprERe I il 100010 CORTEls
[after recursive calls .
\ -
if (x.left == null) return Xx.right; \ﬁ%;:>>///<)
X.left = deleteMin(x.left);
x.count = 1 + size(x.left) + size(x.right);
return x;

30

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

deleting C

node to delete

®
|

replace with

null link

available for

/ garbage

collection

update counts after
recursive calls

31

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

deleting R
update counts after

recursivw 7
5/0
node to delete /

replace with

child link available for
/ garbage

collection

32

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

« Find successor x of t. e rliEs e Bienll
e Delete the minimum in t's right subtree. <«<—— butdon't garbage collect x
« Put xin t's spot. «——— stillaBST

node to delete

N

search for key E t. 1§ft /O%C;Mi n(t.right)

~ 7

X 5
N \
< Ssuccessor

min(t.right)

go right, then / update links and
go left until node counts after
reaching null recursive calls

left link

33

Hibbard deletion: Java implementation

public void d
{ root = del

private Node
if (X == n
int cmp =

elete(Key key)
ete(root, key); }

delete(Node x, Key key) {
ull) return null;
key.compareTo(x.key);

if (cmp < 0) x.left = delete(x.left,

else if (c
else {
if (x.r
if (x.1

Node t
X = min
X.right
X.left

}

X.count =
return X;

mp > 0) x.right = delete(x.right,

ight == null) return x.left;
eft == null) return x.right;

= X;
(t.right);

= deleteMin(t.right);
= t.left;

size(x.left) + size(x.right) + 1;

key); <

key);

search for key

no right child
no left child

replace with
successor

update subtree
counts

34

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N=150

max = 16
avg = 9.3
opt=6.4

Surprising consequence. Trees not random (I) = N per op.
Longstanding open problem. Simple and efficient delete for BSTs.

35

ST implementations: summary

guarantee average case :
ordered operations

implementation
: : : ops? on keys
search insert delete | search hit insert delete

sequential search
(linked list)

N N N 5 N N b N equals()

binary search
(ordered array)

BST N N N 1391gN 1391gN @ v compareTo()

other operations also become +/N

lg N N N lg N 5 N 1z v compareTo()

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

36

