COS 226, SPRING 2014

ALGORITHMS
AND
DATA STRUCTURES

KEVIN WAYNE

™8 PRINCETON
UNIVERSITY

http:/ /www.princeton.edu/~co0s226

COS 226 course overview

What is COS 2267
e Intermediate-level survey course.
« Programming and problem solving, with applications.
o Algorithm: method for solving a problem.

e Data structure: method to store information.

data structures and algorithms

data types stack, queue, bag, union-find, priority queue
sorting quicksort, mergesort, heapsort, radix sorts
searching BST, red-black BST, hash table
graphs BFS, DFS, Prim, Kruskal, Dijkstra
strings KMP, reqular expressions, tries, data compression

advanced B-tree, k-d tree, suffix array, maxflow

Why study algorithms?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...
Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...

Multimedia. MP3, JPG, DivX, HDTYV, face recognition, ...

Social networks. Recommendations, news feeds, advertisements, ...

Physics. N-body simulation, particle collision simulation, ...

Why study algorithms?

Their impact is broad and far-reaching.

Mysterious algorithm was 4% of trading activity last week
October 11, 2012

A single mysterious computer program that placed orders
— and then subsequently canceled them — made up 4
percent of all quote traffic in the U.S. stock market last
week, according to the top tracker of high-frequency
trading activity.

The motive of the algorithm is still unclear, CNBC reports.

The program placed orders in 25-millisecond bursts
involving about 500 stocks, according to Nanex, a market
data firm. The algorithm never executed a single trade,
and it abruptly ended at about 10:30 a.m. ET Friday.

Generic high frequency rrading chart (credit: Nanex)

“My guess is that the algo was testing the market, as

high-frequency frequently does,” says Jon Najarian, co-founder of TradeMonster.com. “As soon as they add
bandwidth, the HFT crowd sees how quickly they can top out to create latency.” (Read More: Unclear What Caused
Kraft Spike: Nanex Founder.)

Why study algorithms?

Old roots, new opportunities.
« Study of algorithms dates at least to Euclid.
« Formalized by Church and Turing in 1930s.
« Some important algorithms were discovered
by undergraduates in a course like this!

300 BCE
1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?

For intellectual stimulation.

THE JoY OF ALGORITHMS

“ For me, great algorithms are the poetry of computation. Just

like verse, they can be terse, allusive, dense, and even mysterious.

But once unlocked, they cast a brilliant new light on some

aspect of computing. ~’ — Francis Sullivan

“ An algorithm must be seen to be believed. © — Donald Knuth

Why study algorithms?

To become a proficient programmer.

“Iwill, in fact, claim that the difference between a bad programmer
and a good one is whether he considers his code or his data structures
more important. Bad programmers worry about the code. Good
programmers worry about data structures and their relationships. ”

— Linus Torvalds (creator of Linux)

“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth

Why study algorithms?

They may unlock the secrets of life and of the universe.

“ Computer models mirroring real life have become crucial for most
advances made in chemistry today.... Today the computer is just as
important a tool for chemists as the test tube. ”

— Royal Swedish Academy of Sciences
(Nobel Prize in Chemistry 2013)

\

Martin Karplus, Michael Levitt, and Arieh Warshel

Why study algorithms?

To solve problems that could not otherwise be addressed.

http:/ /www.youtube.com/watch?v=ua7YIN4elL w

Why study algorithms?

Everybody else is doing it.

% sort
774
615
471
444
440
414
405
384
344
320
300

-rn PU2013-14.txt

CosS
ECO
ECO
ENG
MAT
CosS
MAT
CHV
REL
PSY
COS

126
100
101
385
202
226
201
310
2601
101
217

General Computer Science
Introduction to Microeconomics
Introduction to Macroeconomics
Children's Literature

Linear Algebra with Applications
Algorithms and Data Structures
Multivariable Calculus

Practical Ethics

Christian Ethics and Modern Society
Introduction to Psychology

Introduction to Programming Systems

10

Why study algorithms?

For fun and profit. p, Cisco SYSTEMS
’ facebook M
Apple Computer
Google

®

7
7

e STREET

- ®
Ninfendo iy, JANE

<.lli=

'&‘ RSA
Morgan Stanley N E T I: I' | x AdObe SECURITY"
DEShaw&Co ORACLE G

YaHoO! amazoncom Microsoftt pr ¢ x A R

IIIIIIIIIIIIIIII

11

Why study algorithms?

« Their impact is broad and far-reaching.

e Old roots, new opportunities.

o For intellectual stimulation.

o To become a proficient programmer.

« They may unlock the secrets of life and of the universe.

e To solve problems that could not otherwise be addressed.
« Everybody else is doing it.

Why study anythw

o For fun and profit.

12

Lectures

Traditional lectures. Introduce new material.

Electronic devices. Permitted, but only to enhance lecture.

When Where Office Hours

LO1 MW 11-12:20 McCosh 10 Kevin Wayne see web

Lectures

Traditional lectures. Introduce new material.

Flipped lectures.
« Watch videos online before lecture.
Complete pre-lecture activities.
« Attend only one "flipped"” lecture per week
(interactive, collaborative, experimental).
« Apply via web ASAP: results by 5pm today.

MW 11-12:20 McCosh 10 Kevin Wayne see web

eunn Apuy
40 02-¢T-TT M Z0€ 1si4 Bny ysof oM 89S

14

Precepts

Discussion, problem-solving, background for assignments.

Th 11-11:50 CS 102 Andy Guna t see web
P02 Th 12:30-1:20 Bobst 105 Andy Guna t see web
PO3 Th 1:30-2:20 Bobst 105 Nevin Li see web
P04 F 10-10:50 Bobst 105 Jennifer Guo see web
PO5 F11-11:50 Bobst 105 Madhu Jayakumar see web
PO5A F11-11:50 Sherrerd 001 Ruth Dannenfelser see web
PO6 F 2:30-3:20 Friend 108 Chris Eubank see web
PO6A F 2:30-3:20 Friend 111 TBA see web
PO6B F 2:30-3:20 Friend 109 Josh Hug 1 see web
PO7 F 3:30-4:20 Friend 108 Josh Hug 1 see web

1

likely to change

1 lead preceptor

15

Coursework and grading

Programming assignments. 45%
e« Due on Tuesdays at 11pm via electronic submission.
o Collaboration/lateness policies: see web.

Exercises. 10%
« Due on Sundays at 11pm in Blackboard.
« Collaboration/lateness policies: see web.

Exams. 15% + 30% Final
« Midterm (in class on Wednesday, March 12).

Programs

« Final (to be scheduled by Registrar).

Midterm

Staff discretion. [adjust borderline cases]
« Report errata. Exercises

o Contribute to Piazza discussion forum.

o Attend and participate in precept/lecture.

16

Resources (textbook)

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

\ 4th edition (2011)
3rd book scanned

by Google books
Available in hardcover and Kindle.
« Online: Amazon ($60/$35 to buy), Chegg ($25 to rent), ...
e Brick-and-mortar: Labyrinth Books (122 Nassau St).
« On reserve: Engineering library.

17

Resources (web)

Course content.
« Course info.
e Lecture slides.
e Flipped lectures.
e Programming assignments.
« EXercises.
« Exam archive.

Booksite.
e Brief summary of content.
« Download code from book.
« APIs and Javadoc.

% PRINCETON ComPUTER ScCIENCE 226
¥ UNIVERSITY - A; GoRITHMS AND DATA STRUCTURES
SprinGg 2014

Course Information | Lectures | Flipped | Precepts | Assignments | Exercises | Exams

COURSE INFORMATION

Description. This course surveys the most important algorithms and data structures in use on
computers today. Particular emphasis is given to algorithms for sorting, searching, and string processing.
Fundamental algorithms in a number of other areas are covered as well, including geometric and graph
algorithms. The course will concentrate on developing implementations, understanding their performance
characteristics, and estimating their potential effectiveness in applications.

http://www.princeton.edu/~co0s226

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Algorithms

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin
Wayne [Amazon - Addison-Wesley] surveys the most important algorithms and
data structures in use today. The textbook is organized into six chapters:

Arsormime, 4 EDmon e Chapter 1: Fundamentals introduces a scientific and engineering basis for

1. Fundamentals comparing algorithms and making predictions. It also includes our

2. Sorting programming model.

e e Chapter 2: Sorting considers several classic sorting algorithms, including

ocaiCg insertion sort, mergesort, and quicksort. It also includes a binary heap

4. Graphs implementation of a priority queue.

5. Strings e Chapter 3: Searching describes several classic symbol table
implementations, including binary search trees, red-black trees, and hash

6. Context tables.

http://algs4.cs.princeton.edu

18

Resources (web)

® 00

cos 226 - Google Search

@ | (=

<> ||

cos 226 - Google > -
LUS &&U MUUYILC JTal LIl

[AA] =] (O] +

Web Images Videos Maps News Shopping Gmail more -

Google

Q, Everything
More

Show search tools

Advanced search

cos(226) = 0.981111354

More about calculator.

Search for documents containing the terms cos 226.

Search Help Give us feedback

Google Home Advertising Programs Business Solutions Privacy About Google

http:/ /www.princeton.edu/~cos226

*§ http: / /www.google.com/search7client=safari&rls=en&q=226&ie=UTF-8&oe=UTF-8#sclient=psy&hl=en&c/ - & | (Q~ 226

19

Resources (web)

N N&) 226 - Google Search

"o

4)r)~ | C') (X) (M) g: '/http://www.google.com/#sclient=psy&h|=en&q=+226&aq=f&a{.}' v)

v'[Google

Web Images Videos Maps News Shopping Gmail more v

Web History | Search settings | Sign in

GO ()gle 226 Search

and Data Structures Fall 2010 ...
All results www.princeton.edu/~cos226/ - Cached - Similar
Sites with images

Images for 226 - Report images

¥ More search tools

Instantison v

About 236,000,000 results (0.18 seconds) Advanced search
*% Everything Area codes 519 and 226 - Wikipedia, the free encyclopedia
Images The 226 area code was first proposed as a result of an NPA exhaustion study conducted in the
g 1990s. The issue was raised with the CRTC by telecommunications ...
B Videos en.wikipedia.org/wiki/Area_codes_519_and_226 - Cached - Similar
= News 226 - Wikipedia, the free encyclopedia
v More 226. From Wikipedia, the free encyclopedia. Jump to: navigation, search. This article is
about the year 226. For the number 226, see 226 (number). ...
en.wikipedia.org/wiki/226 - Cached - Similar
Any time
Latest COS 226, Fall 2010: Home Page
Past 2 days Princeton COS 226: Data Structures and Algorithms. ... Computer Science 226. Algorithms

230 7 1% B 0w,

el

http:/ /www.princeton.edu/~cos226

20

Resources (web)

® 00 226 - Google Search "
[‘ﬁ'] [@] [| >] [ﬁ] [A | A] ['L".'.f] [’] [0] [Q] [L”] [ek IQ‘ Search Google or enter an address ¢ ‘ Reader]
Google [2s N =
Web Maps Images Videos Books More ~ Search tools Q

About 175,000,000 results (0.15 seconds)

COS 226, Spring 2014: Home Page

www.princeton.edu/~cos226/ ~ Princeton University ~

If you have not taken COS 126 or COS 217 but want to place into COS 226, email
Josh Hug. If you are unable to enroll because the only precepts you can attend ...

Assignments - Lectures - Exercises

226 - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/226 ~ Wikipedia ~

Year 226 (CCXXVI) was a common year starting on Sunday (link will display the full
calendar) of the Julian calendar. At the time, it was known as the Year of the ...

Area codes 519 and 226 - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Area_codes_519_and_226 - Wikipedia ~

It is mostly bounded by area code 905, except for Simcoe County which is bordered by
705. It was overlaid with the new area code 226 on October 21, 2006, ...

History - Dialing areas - See also - References

Route 226 - King County Metro Transit
metro.kingcounty.gov/schedules/226/ ~ King County Metro ~

Mar 28, 2013 - You are in: Travel Options >; Bus >; Schedules >; Route 226. Fares &
ORCA - Trip Planner - Go to Metro Online's Home Page ...

To Overlake, Eastgate - Route Map - Saturday - Sunday

See results about

Area codes 519 and 226
519 is the telephone area code which
covers most of southwestern ...

Feedback

http:/ /www.princeton.edu/~co0s226

21

Resources (web)

® OO0 algorithms - Google Search

Nt Q. hups @ algorithms
Google algorithms

Web Images Maps Shopping News More ~ Search tools

About 22,700,000 results (0.13 seconds)

Algorithm - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Algorithm ~

In mathematics and computer science, an algorithm is a step-by-step procedure for
calculations. Algorithms are used for calculation, data processing, and ...

List of algorithms - Algorithm examples - Automated reasoning - Euclidean

List of algorithms - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/List_of_algorithms ~
The following is a list of algorithms along with one-line descriptions for each.

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
algs4.cs.princeton.edu/ ~

The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne surveys
the most important algorithms and data structures in use today. The broad ...

HowStuffWorks "What is a "computer algorithm"?"
computer.howstuffworks.com/question717.htm ~

That's where computer algorithms come in. The algorithm is the basic technique used
to get the job done. Let's follow an example to help get an understanding ...

Algorithms, Part | | Coursera
https://www.coursera.org/course/algs4partl ~

Algorithms, Part | is a free online class taught by Kevin Wayne and Robert Sedgewick
of Princeton University.

22

Where to get help?

Piazza discussion forum.
« Low latency, low bandwidth.
« Mark solution-revealing questions
as private.

Office hours.
« High bandwidth, high latency.
« See web for schedule.

Computing laboratory.
« Undergrad lab TAs in Friend 017.
e For help with debugging.
« See web for schedule.

http://piazza.com/princeton/spring2014/cos226

http:/ /www.princeton.edu/~cos226

http:/ /www.princeton.edu/~cos226

23

Where not to get help?

I WILL NOT PLAGIARIZE ANOTHER’S WORK
I WILL NOT PLAGIARIZE ANOTHER’S WORK
I WILL NOT PLAGIARIZE ANOTHER’S WORK
I WILL NOT PLAGIARIZE ANOTHER’S WORK
I WILL NOT PLAGIARIZE ANOTHER’S WORK
I WILL NOT PLAGIARIZE

http:/ /world.edu/academic-plagiarism

211 Math call

http:/ /www.youtube.com/watch?v=FT4NOe4vtoM

24

What's ahead?

Lecture 1. [today] Union find.

Lecture 2. [Wednesday] Analysis of algorithms.

Flipped lecture 1. [Wednesday] Watch video beforehand.
Precept 1. [Thursday/Friday] Meets this week.

Exercise 1. Due via Bb submission at 11pm on Sunday.
Assignment 1. Due via electronic submission at 1 1pm on Tuesday.

™

protip: start early

Right course? See me.
Placed out of COS 1267 Review Sections 1.1-1.2 of Algorithms 4/e.

Not registered? Go to any precept this week.
see Colleen Kenny-McGinley

Change precept? Use SCORE. <«——— in CS 210 if the only precepts
you can attend are closed

25

A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

1.5 UNION-FIND

» dynamic connectivity
» quick find

» quick union

Algorithms

O URTH g,

» Improvements

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why not.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

1.5 UNION-FIND

» dynamic connectivity

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic connectivity problem

Given a set of N objects, support two operation:
« Connect two objects.
e |s there a path connecting the two objects?

are 0 and 7 connected? X e 6 a 6 e

are 8 and 9 connected? v
connect 5 and 0
connect 7 and 2
connect 6 and 1
connect 1 and 0

are 0 and 7 connected? v

q

%

l
-

Segasy
298

o
o
i
H
eielsalesd
1
T
I
2
s s
!
1
4

. 1
|88

!
TF .
1

)

|

11

!

Lo

* 4
p—4
>4
e 9 ¢ * o
) L B J
oo 4

L 4 .’
’ *~—9 .
p—4

)
- s

Ly

i
l
!
I Ity
IICEHJ
Hels
Seelgehegs
- Hah
iq*m
o {
i

’]
o oo

14y
!
o3

*—9 o9

E
I%H
: 1
1
ik
it
)

agegee
) S

>~ L]
> L

1?—4 >

B
:
. “i_i_:. =»‘
L.Iil“
!
— 1
)
]

» *—e
[I] *—o—o .
L] * 4

L I L] I H:E_.

L 3 * o4
- I L
4 ’ 0—I

HI—{.—H
[—IH
! !
!
. :—Ia-lﬂ L]

..
T
%HEL.
etapleifielcsss
:;.HIF&::
segt
3338
]
-1
Iegit
< TSt
i
%fg:m

A larger connectivity example
Q. Is there a path connecting p and ¢ ?

A. Yes.

Modeling the objects

Applications involve manipulating objects of all types.
« Pixels in a digital photo.
« Computers in a network.
e Friends in a social network.
o Transistors in a computer chip.
« Elements in a mathematical set.
« Variable names in a Fortran program.
« Metallic sites in a composite system.

When programming, convenient to name objects O to N — 1.
« Use integers as array index.
e Suppress details not relevant to union-find.

N

can use symbol table to translate from site
names to integers: stay tuned (Chapter 3)

Modeling the connections

We assume "is connected to" is an equivalence relation:

« Reflexive: p is connected to p.
 Symmetric: if p is connected to ¢, then ¢ is connected to p.

e Transitive: if p is connected to ¢ and ¢ is connected to r,

then p is connected to r.

Connected component. Maximal set of objects that are mutually connected.

{0}y{145} {23671}

~__

3 connected components

Implementing the operations

Find. In which component is object p?
Connected. Are objects p and ¢ in the same component?
Union. Replace components containing objects p and g with their union.

union(2, 5)

—

{03r{1453{2367} {0} {12345671}

~__ S

3 connected components 2 connected components

Union-find data type (API)

Goal. Design efficient data structure for union-find.

« Number of objects N can be huge.

« Number of operations M can be huge.

« Union and find operations may be intermixed.

public class UF
UFCint N) iiftitializ.e uni0n-ﬁnc.l data structure
with N singleton objects (0 to N — 1)
void union(int p, int q) add connection between p and q
int find(int p) component identifier for p (0 to N — 1)
boolean connected(int p, int q) are p and q in the same component?

public boolean connected(int p, int q)
{ return find(p) == find(q); }

1-line implementation of connected()

Dynamic-connectivity client

« Read in number of objects N from standard input.

e Repeat:

— read in pair of integers from standard input

— if they are not yet connected, connect them and print out pair

public static void main(String[] args)

{

int N = StdIn.readInt();
UF uf = new UF(N);
while (!StdIn.isEmpty())

{
int p = StdIn.readInt();

int q = StdIn.readInt();

if (luf.connected(p, q))

{
uf.union(p, q);
StdOut.printin(p + " " + q);

% more tinyUF.txt

10
4

N O Oy W

N o

= B~ U100 W

N O

already connected

10

1.5 UNION-FIND

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure. | .
if and only if
e Integer array id[] of length N. /

o Interpretation: id[p] is the id of the component containing p.

0, 5 and 6 are connected

id[] 0 1 1 8 8 0 0] 8 8§ 1, 2, and 7 are connected

3,4, 8, and 9 are connected

12

Quick-find [eager approach]

Data structure.
e Integer array id[] of length N.
o Interpretation: id[p] is the id of the component containing p.

id[] 1 0

Find. What is the id of p? id[6] = 0;id[1] = 1
i 6 and 1 are not connected
Connected. Do p and g have the same id?

Union. To merge components containing p and q, change all entries

whose id equals id[p] to id[q].

1id[] 1]]]]] after union of 6 and 1

T 11

problem: many values can change

13

Quick-find demo

d[] 0 I 2 3 4 5 6 7 8 9

Quick-find demo

id[]

1

11

Quick-find: Java implementation

public class QuickFindUF

{

private int[] 1d;

public QuickFindUF(int N)

{
1d = new 1nt[N];
for (int i =0; 1 < N; i++) <
1d[1] = 1;

}

public boolean find(int p) <

{ return id[pl; }

public void union(int p, int q)

{
int pid = 1d[p];
int gid = 1d[q];
for (Aint 1 = 0; 1 < id.length; 1++) <
1f (Ad[1] == pid) id[1] = qid;
}

set id of each object to itself
(N array accesses)

return the id of p
(1 array access)

change all entries with id[p] to id[q]
(at most 2N + 2 array accesses)

16

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

quick-find

order of growth of number of array accesses

quadratic

'

Union is too expensive. It takes N2 array accesses to process
a sequence of N union operations on N objects.

17

Quadratic algorithms do not scale

Rough standard (for now). =
e 109 Operations per second. a truism (roughly) | ~Tecle

since 1950! o' S
. 109 words of main memory. J/

« Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

e 10°% union commands on 10° objects.

e Quick-find takes more than 10'8 operations.
e 30+ years of computer time!

time

quadratic
64T

Quadratic algorithms don't scale with technology.
« New computer may be 10x as fast.

« But, has 10x as much memory = 327

want to solve a problem that is 10x as big.
16T) _ .
« With quadratic algorithm, takes 10x as long! linearithmic

8T — .
linear

] | |
size — 1K 2K 4K 8K

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.
« Integer array id[] of length N.

keep going until it doesn’t change

e Interpretation: id[i] is parent of 1. / (algorithm ensures no cycles)

« Root of i is id[id[id[...id[i]...]1]].
ORONONNONG,
dl 0 1 9 4 9 6 6 7 8 9 ee

3

parent of 3 is 4

root of 3 is 9

20

Quick-union [lazy approach]

Data structure.
« Integer array id[] of length N.
e Interpretation: id[i] is parent of 1.
« Root of i is id[id[id[...id[i]...]11].

dl] 0 I 9 4 9 6 6 7 8 9

Find. What is the root of p?
Connected. Do p and g have the same root?

Union. To merge components containing p and q,
set the id of p's root to the id of g's root.

d] 0 I 9 4 9 6 6 7 8 6

T

only one value changes

OO® ©®0 6
@ ®O:-
> @

root of 3is 9
root of 5 is 6
3 and 5 are not connected

© O ® O ®

Qq
@ ®

> ©

21

Quick-union demo

O

ONORORORORORORORONO

d[] 0 1 2 3 4 5 6 7 8 9

Quick-union demo

Quick-union: Java implementation

public class QuickUnionUF

{
private int[] 1id;

public QuickUnionUF(int N)

{
id = new int[N]: set id of each object to itself
for (int 1 = 0; 1 < N; i4++) id[i1] = 1; < (N array accesses)

}

public int find(int 1)

{
while (1 != id[1]) 1 = 1d[1]; chase parent pointers until reach root
return 1i; < (depth of i array accesses)

}

public void union(int p, int q)

{
int 1 = find(p); change root of p to point to root of g
int j = find(q); < (depth of p and g array accesses)
id[1] = J;

}

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

quick-find
quick-union N N f N N

1 includes cost of finding roots

Quick-find defect.
 Union too expensive (N array accesses).
« Trees are flat, but too expensive to keep them flat.

Quick-union defect.
« Trees can get tall.

<«—— WOorst case

 Find/connected too expensive (could be N array accesses).

25

1.5 UNION-FIND

Algorithms

» Improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Improvement 1: weighting

Weighted quick-union.

« Modify quick-union to avoid tall trees.
o Keep track of size of each tree (number of objects).

« Balance by linking root of smaller tree to root of larger tree.

quick-union @

smaller
tree

~—_ might put the

larger larger tree lower

tree

weighted
always chooses the

@\/ better alternative

larger smaller

@
®/

smaller

@
®/

smaller

\

reasonable alternatives:
union by height or "rank”

27

Weighted quick-union demo

O

ONORORORORORORORONO

d] 0 1 2 3 4 5 6 7 8 9

28

Weighted quick-union demo

d] 6 2 6 4 6 6 6 2 4 4

Quick-union and weighted quick-union example

quick-union
o o e o 0 o o o
=
average distance to root: 5.11
weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

30

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at 1.

Find/connected. Identical to quick-union.
Union. Modify quick-union to:

« Link root of smaller tree to root of larger tree.
o Update the sz[] array.

int 1 = find(p);
int J = find(q);

1f (1 == j) return;
it (sz[i1] < sz[j]) { id[i] = J; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }

31

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.

e Union: takes constant time, given roots.
|lg = base-2 logarithm

/

Proposition. Depth of any node x is at most lg V.

depth 3

N=11
depth(x) =3 < IgN

32

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.

« Union: takes constant time, given roots.
lg = base-2 logarithm
Proposition. Depth of any node x is at most lg V.

Pf. What causes the depth of object x to increase?
Increases by 1 when tree 71 containing x is merged into another tree 7T».

« The size of the tree containing x at least doubles since | T>| = | T1|.
« Size of tree containing x can double at most Ig N times. Why?

>~ N =

>IgN

o R

N J

33

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.
« Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg V.

quick-find
quick-union N N t N N
weighted QU N Ig N 1 Ig N Ig N

t includes cost of finding roots

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

34

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

a root

& @
® ® O

35

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

root

© ® ® © ©

36

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

37

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

38

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

Bottom line. Now, find() has the side effect of compressing the tree.

39

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[]
of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path
point to its grandparent.

public int find(int 1)

{
while (1 !'= 1d[1])
{
id[i] = id[id[i]]; < only one extra line of code !
i = id[i];
}
return 1;
}

In practice. No reason not to! Keeps tree almost completely flat.

40

Weighted quick-union with path compression: amortized analysis

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an
empty data structure, any sequence of M union-find ops

] 0

on N objects makes < ¢(N+Mlg* N) array accesses. ,]
e Analysis can be improved to N+ M o(M, N). 4 5

o Simple algorithm with fascinating mathematics. 6 ;
65536 4

265536 5

: : : : : _ iterated lg function
Linear-time algorithm for M union-find ops on N objects?

o Cost within constant factor of reading in the data.
e In theory, WQUPC is not quite linear.
e |In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

N\

in "cell-probe" model of computation

41

Summary

Key point. Weighted quick union (and/or path compression) makes it
possible to solve problems that could not otherwise be addressed.

quick-find M N
quick-union M N
weighted QU N+ MlogN

QU + path compression N+ M log N
weighted QU + path compression N+ M Ig* N

order of growth for M union-find operations on a set of N objects

Ex. [109 unions and finds with 10° objects]

« WQUPC reduces time from 30 years to 6 seconds.

« Supercomputer won't help much; good algorithm enables solution.

42

1.5 UNION-FIND

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

e Percolation.
« Games (Go, Hex).
v Dynamic connectivity.
e Least common ancestor.
« Equivalence of finite state automata.
« Hoshen-Kopelman algorithm in physics.
« Hinley-Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
« Compiling equivalence statements in Fortran.
« Morphological attribute openings and closings.

« Matlab's bwlabel() function in image processing.

44

Percolation

An abstract model for many physical systems:
« N-by-N grid of sites.
« Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

percolates does not percolate
. blocked

site

N

open —

site - \

open site connected to top

I

no open site connected to top

45

Percolation

An abstract model for many physical systems:
e N-by-N grid of sites.
e Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

46

Likelihood of percolation

Depends on grid size N and site vacancy probability p.

p medium (0.6) p high (0.8)

p low (0.4)
does not percolate

percolates

percolates?

47

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.
« p > p*: almost certainly percolates.
e p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

O—I @ @ @ I

|
0 0.593 1

N 100 site vacancy probability p

48

Monte Carlo simulation

 |nitialize all sites in an N-by-N grid to be blocked.
o Declare random sites open until top connected to bottom.

e Vacancy percentage estimates p*.

20 135 open sites

2
I

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

49

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
A. Model as a dynamic connectivity problem and use union-find.

open site

. blocked site

50

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
 Create an object for each site and name them 0 to N2 1.

open site

. blocked site

51

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
 Create an object for each site and name them 0 to N2 1.
« Sites are in same component iff connected by open sites.

.ol
..

I

open site

. blocked site

52

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
 Create an object for each site and name them 0 to N2 1.
« Sites are in same component iff connected by open sites.

« Percolates iff any site on bottom row is connected to any site on top row.

brute-force algorithm: N2 calls to connected()

N=5 o—o ©o @ toprow
o o © o
O O ©
o 6 o o

® 0@ oitomrow

open site

. blocked site

53

Dynamic connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).
« Percolates iff virtual top site is connected to virtual bottom site.

N

more efficient algorithm: only 1 call to connected()

virtual top site

ves —eo o ® torrow
e o o ®
e o o
® © 0 ©

® 0@ rotomrow

open site

virtual bottom site

. blocked site

54

Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

open this site

.ol
l .

I

open site

. blocked site

55

Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?
A. Mark new site as open; connect it to all of its adjacent open sites.

N

up to 4 calls to union()

open this site

open site

. blocked site

56

Percolation threshold

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.
N

constant known only via simulation

percolation
probability

O—I @ @ @ I

I
0 0.593 1

N 100 site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

57

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

58

