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Recall that in the previous lecture, our task was modeling or estimating a probability
distribution. We are given a large (but not “gigantic”) space X where |X| = N . We also
have points x1, . . . , xm ∈ X where xi ∼ D and D is an unknown distribution. Further, we
have features f1, . . . , fn where fj : X → R; in other words, each feature is a real-valued
function. Our goal is to estimate the distribution D.

We have already discussed two possible approaches; the first is using maximum entropy,
or q∗ = arg maxq∈P H(q), where

P = {q | ∀j : Eq[fj ] = Ê[fj ]}

Eq[f ] = Ex∼q[f(x)]

Ê[f ] =
1
m

m∑
i=1

f(x).

The second is by picking a parametric form, or q∗ = arg maxp∈Q
∑

i ln q(xi) where

Q =

q : q has form q(x) =
exp

(∑
j λjfj(x)

)
Zλ

 .

Theorem 1. The following are equivalent:

(1) q∗ = arg maxq∈P H(q)
(2) q∗ = arg maxq∈Q

∑
i ln q(xi)

(3) q∗ ∈ P ∩Q

Any one of these uniquely defines q∗. In today’s lecture, we want to show how to
numerically find solution to this by deriving an algorithm and proving it converges to the
solution.

Expression (2) in theorem 1 is the easiest one to manage, so we want to find the λj ’s to
minimize the objective loss function

L(λ) = − 1
m

m∑
i=1

ln qλ(xi)

where

qλ(x) =
exp

(∑
j λjfj(x)

)
Zλ

.

For shorthand, let’s call gλ(x) =
∑

j λjfj(x).
Now our approach can be that we want to find a new λt with each iteration of the

algorithm such that the loss converges as follows:

L(λt)→ inf
λ
L(λ)

The basic shell of this algorithm would be:



choose λ1 (e.g., 0)
for t = 1, 2 . . . do

compute λt+1 from λt
end for

We also want to assume that for all x:

∀j : fj(x) ≥ 0 and
n∑
j=1

fj(x) = 1.

Thus for any x, the features form a probability distribution.

Preliminary 1. We can assume that for all x and for all j: fj(x) ≥ 0 and
∑n

j=1 fj(x) = 1
without loss of generality.

We know that each feature fj maps X → R; this can be rescaled to fj : X → [0, 1],
because the domain X is finite. Then, fj can be replaced by fj/n. Now,

∀x :
n∑
j=1

fj(x) ≤ 1.

Finally, we can create a new feature:

f0(x) := 1−
n∑
j=1

fj(x)

such that now ∀x:
∑n

j=0 fj(x) = 1. In addition, we have not changed the space of functions
we are working with since a linear combination involving f0 will still be linear in the original
features f1, . . . , fn.

Returning to our loss function L(λ), we can reframe the problem of minimizing the
change in loss between iterations, which is equivalent. Using the shorthand of λt = λ and
λt+1 = λ′, which will make notation easier hereafter, we can write this change in loss as
∆L = L(λ′)− L(λ). We can then write our update to λ as λ′j = λj + αj .

We want to figure out an approximation on ∆L and minimize that instead. In doing
so, we have two major considerations: (1) that the approximation is tractable (easy to
compute) and (2) that it is tight enough (so that it is close to what we actually want).

We start by writing out by filling in the equation with definitions:

∆L =
1
m

∑
i

[
− ln

(
exp(gλ′(xi)

Zλ′

)
+ ln

(
exp(gλ(xi)

Zλ

)]

=

[
1
m

∑
i

(gλ(xi)− gλ′(xi))

]
+ ln

(
Zλ′

Zλ

)
= (term 1) + (term 2)
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(term 1) =
1
m

∑
i

∑
j

λjfj(xi)−
∑
j

λ′jfj(xi)


= − 1

m

∑
i

∑
j

αjfj(xi)

= −
∑
j

αj

(
1
m

∑
i

fj(xi)

)
= −

∑
j

αjÊ[fj ]

Everything up until this point has been exact. Now let’s examine a part of term 2,
where

∑
x is over the entire space X:

Zλ′

Zλ
=

∑
x exp

(∑
j λ
′
jfj(x)

)
Zλ

=

∑
x exp

(∑
j(λj + αj)fj(x)

)
Zλ

=

∑
x exp

(∑
j λjfj(x) +

∑
j αjfj(x)

)
Zλ

=
∑
x

qλ(x) exp

∑
j

αjfj(x)


Because of convexity we can approximate the exponential of an average of terms as

being less than or equal to the average of the exponentials of those same terms. This
approximation gives us

Zλ′

Zλ
≤
∑
x

qλ(x)
∑
j

fj(x)eαj =
∑
j

(∑
x

qλ(x)fj(x)

)
eαj =

∑
j

Eqλ [fj ] eαj

Putting everything back together, we get

∆L ≤ −
∑
j

αjÊ[fj ] + ln

∑
j

Eqλ [fj ] eαj


Now we can optimize with respect to αj . (We’ll use yet another shorthand of Ê[fj ] = Êj

and Eqλ[fj ] = Ej .)
∂∆L
∂αj

= −Êj +
Eje

αj∑
j Ejeαj

= 0

We can also do αj+c instead of αj because of cancelation; if α′j is a solution, then αj = α′j+c
is also a solution. Then, we can just choose c such that the denominator is equal to 1. Thus,

αj = ln

(
Êj

Ej

)
.
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Our algorithm, which is called “iterative scaling” can now have the updates

λt+1,j ← λt,j + ln

(
Ê[fj ]

Eqλ̂t
[fj ]

)
.

If we switch to using the notation pt = qλt , then we can rewrite this in terms of p, which
gives us

pt+1(x) ∝ pt(x)
∏
j

(
Ê[fj ]
Ept [fj ]

)fj(x)
.

We are looking for p such that for all t : Ept [fj ] = Ê[fj ]. Say on some round t this isn’t
true, e.g., Ept [fj ] < Ê[fj ]; then, Ê[fj ]/Ept [fj ] > 1; so we want Ept [fj ] to be larger. Since
the base of the exponent is greater than 1 in this case, larger values of fj(x) will tend to
get greater weight under pt+1, so that the expectation will tend to get larger.

This gives us an intuition, but we need to show that it actually works, i.e., we need to
prove that it converges to the distribution that we want.

Theorem 2. pt converges to q∗ as t→∞.

The technique for this proof is using an auxiliary or helper function.

Proof We define an auxiliary function A to be a real-valued function defined on the space
of probability distributions on X which has three key properties:

(1) A is continuous
(2) A gives upper bound of change in loss

L(λt+1)− L(λt) ≤ A(pt) ≤ 0
(3) A(p) = 0⇒ p ∈ P

We want to first show that if A exists, then it proves the desired result. Then, we’ll
show that A exists.

Say A exists. By property 2, we know that L ≥ 0 and L(λt) never increases and never
goes below 0. This implies that ∆L → 0, or L(λt+1) − L(λt) → 0. By this and property
(2), A(pt)→ 0, because it is squeezed between the two bounds.

Say p is the limit of pt, or p = limt→∞ pt. Then we know three things:

(1) p ∈ Q, since pt ∈ Q because our algorithm uses distributions of the form that defines
Q and Q contains all limits of sequences in Q (by definition of closure).

(2) A(p) = 0 since A is continuous. The center equality in the following expression is the
definition of continuous.

A(p) = A( lim
t→∞

pt) = lim
t→∞

A(pt) = 0.

(3) p ∈ P by property 3. This gives us that p ∈ P ∩Q and therefore p = q∗.
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Here we have assumed that lim pt exists, which might not be the case. To argue this
more carefully, note that the pt’s are in a compact space. Therefore, they have a convergent
subsequence. By the argument that we just gave, that subsequence must converge to q∗.
Since every convergent subsequence converges to this same unique point q∗, it can be argued
that the entire sequence converges to q∗.

Recall from previously in this lecture:

∆L ≤ −
∑
j

αjÊ[fj ] + ln

∑
j

Eqλ [fj ] eαj


and

αj = ln

(
Êj

Ej

)
.

We also know that
∑

j Eqλ [fj ] eαj = 1, thus giving us:

∆L = −
∑
j

ln

(
Êj

Ej

)
Ê[fj ]

which looks a lot like relative entropy.
We also claim that Eq is a distribution; this is true by linearity of expectation: we know

that Eq[
∑

j fj ] = 1, therefore
∑

j Eq[fj ] = 1 and Eq is a distribution.
Therefore,

∆L = −RE(〈Ê[fj ]〉 || 〈Ept [fj ]〉),

where the notation 〈Ê[fj ]〉 is shorthand for the vector 〈Ê[f1], . . . , Ê[fn]〉.
For any distribution p, we can define

A(p) = −RE(〈Ê[fj ]〉 || 〈Ep[fj ]〉).

Let’s review the three necessary properties. Relative entropy guarantees property (1)–
continuity. Property (2) is satisfied because relative entropy is always ≥ 0, thus negative
relative entropy must be ≤ 0. Property (3) is satisfied because A(p) = 0 implies, using the
fact that relative entropy is zero if and only if the two distributions that are involved are
identical, that for all j : Ê[fj ] = Ep[fj ] and therefore p ∈ P .

We’ve been looking at the batch setting. Next time, we’ll take a look at the analogous
problem in the online setting. Suppose one is placing bets at a horserace. We use the
probability of a horse winning a race in order to place bets. Experts give advice on these
probabilities, and you combine the expert advice into your own distribution, where your
own is not too much worse than the best expert. More concretely,

for t = 1, . . . , T do
each expert gives estimated probability distribution pt,i over space X
learner combines these into own probability distribution qt
observe outcome xt ∈ X
loss suffered by learner is log loss: − ln qt(xt)

end for
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We get a cumulative loss function −
∑

t ln qt(xt) and expert loss −
∑

t ln pt,i(xt). Next time,
we’ll look for a bound like:

−
T∑
t=1

ln qt(xt) ≤ min
i

(
−

T∑
t=1

ln pt,i(xt)

)
+ (small amount).
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