
Source code management systems

•  SVN, Git, Mercurial, Bazaar, ...
•  for managing large projects with multiple people

–  work locally or across a network
•  store and retrieve all versions of all directories and files in a
project
–  source code, documentation, tests, binaries, ...

•  support multiple concurrent users
–  independent editing of files
–  merged into single version

•  highly recommended for COS 333 projects!
–  save all previous versions of all files so you can back out of a bad change
–  log changes to files so you can see who changed what and why
–  mediate conflicting changes made by different users to maintain

consistency

Basic sequence for SVN
•  create a repository

–  where SVN stores its copies of your files
–  including all changes made by anyone

•  each person checks out a copy of the files
–  "copy - modify - merge"
–  get files from repository to work on

does not lock the repository
–  make changes in a local copy
–  when satisfied, check in (== commit) changes

•  if my changes don't conflict with your changes
–  SVN updates its copies with the revised versions
–  automatically merges edits on different lines
–  keeps previous copies

•  if my changes conflict with your changes
–  e.g., we both changed lines in the same part of file,
 SVN doesn't permit the checkin
–  we have to resolve the conflict manually

Basic sequence, continued

•  when changes are committed, SVN insists on a log message
–  strong encouragement to record what change was made and why
–  can get a history of changes to one or more files
–  can run diff to see how versions of a file differ

•  can create multiple branches of a project

•  can tag snapshots for, e.g., releases

•  can be used as client-server over a network, so can do
distributed development
–  repository on one machine
–  users and their local copies can be anywhere

Getting started

•  to put code under SVN control, do this once:
 svnadmin create repository
 [mkdir proj.dir & put files in it, or use existing directory]
 svn import proj.dir file:///repository -m 'initial repository'
 svn checkout file:///repository working.dir

•  create, edit files in working.directory
 cd working.dir
 ed x.c # etc.
 svn diff x.c
 svn add newfile.c

•  update the repository from the working directory
 svn commit # commit all the changes

•  for more info, read svn.help on web page, SVN book, etc.

Alternatives

•  Git
 http://git-scm.com/

•  Bazaar
 http://bazaar-vcs.org

•  Mercurial
 http://www.selenic.com/mercurial

•  comparison page
 http://www.infoq.com/articles/dvcs-guide

Git

•  originally written by Linus Torvalds, 2005
•  distributed

–  no central server: every working directory is a complete repository
–  has complete history and revision tracking capabilities

•  originally for maintaining Linux kernel
–  lots of patches
–  many contributors
–  very distributed
–  dispute with BitKeeper (commercial system)
–  dissatisfaction with CVS / SVN

Basic Git sequences (git-scm.com/documentation, gitref.org)

cd project!
git init!
!makes .git repository
git add .!
git commit!
!makes a snapshot of current state
[modify files]
git add … [for new ones]!
git rm … [for dead ones]!
git commit!
git log --stat –summary!
git clone [url]!
 makes a copy of a repository

CAS: Centralized Authentication Service

•  if your project requires users to log in with a Princeton netid
 don't ask users to send you their passwords at all,
 and especially not in the clear

•  OIT provides a central authentication service
–  the user visits your startup page
–  the user is asked to authenticate via OIT's service
–  the name and password are sent to an OIT site for validation
 (without passing through your code at all)
–  if OIT authenticates the user, your code is called

•  OIT web page about CAS:
 https://sp.princeton.edu/oit/sdp/CAS/!
 Wiki%20Pages/Home.aspx!
•  sample code:
 www.cs.princeton.edu/~bwk/public_html/CAS!

Behind the scenes in the client libraries

•  your web page sends user to
 https://fed.princeton.edu/cas/login?!
 service=url-where-user-will-log-in!

•  CAS sends user back to the service url to log in
 with a parameter ticket=hash-of-something!

•  your login code sends this back to
 https://fed.princeton.edu/cas/validate?!
 ticket=hash&service=url…log-in

•  result from this is either 1 line with "no"
 or two lines with "yes" and netid!

