
Java in 21 m
inutes

• hello world
• basic data types
• classes & objects
• program

 structure
• constructors
• garbage collection
• I/O

• exceptions
• Strings

H
ello world

import java.io.*;

public class hello {

 public static void main(String[] args)
 {
 System.out.println("hello, world");
 }
} • com

piler creates hello.class

 javac hello.java
• execution starts at m

ain in hello.class

 java hello

• filenam
e has to m

atch class nam
e

• libraries in packages loaded with import
– java.lang is core of language

System
 class contains stdin, stdout, etc.

– java.io is basic I/O
 package

file system
 access, input & output stream

s, ...

Basic data types

public class fahr {
 public static void main(String[] args){
 for (int fahr = 0; fahr < 300; fahr += 20)
 System.out.println(fahr + " " +
 5.0 * (fahr - 32) / 9.0);
 }
} • basic types:

– boolean
 true / false

– byte
 8 bit signed

– char
 16 bit unsigned (U

nicode character)
– int

 32 bit signed
– short, long, float, double

• String is sort of built in
– "..." is a String
– holds chars, N

O
T bytes

– does N
O

T have a null term
inator

– + is string concatenation operator

• System
.out.println(s) is only for a single string

– form
atted output is a total botch

2 versions of echo

public class echo {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 if (i < args.length-1)
 System.out.print(args[i] + " ");
 else
 System.out.println(args[i]);
 }
} public class echo1 {
 public static void main(String[] args) {
 String s = "";

 for (int i = 0; i < args.length-1; i++)
 s += args[i] + " ";
 if (args.length > 0)
 s += args[args.length-1];
 if (s != "")
 System.out.println(s);
 }
} • arrays have a length field (a.length)

– subscripts are always checked
• Strings have a length() function (s.length())

Classes, objects and all that

• data abstraction and protection m
echanism

• originally from

 Sim
ula 67, via C++ and others

class thing {
 public part:

 m
ethods: functions that define what operations

 can be done on this kind of object
 private part:

 functions and variables that im
plem

ent the
 operation

} • defines a new data type "thing"
– can declare variables and arrays of this type, pass to

functions, return them
, etc.

• object: an instance of a class variable
• m

ethod: a function defined within the class
– (and visible outside)

• private variables and functions are not accessible
from

 outside the class
• not possible to determ

ine H
O
W

 the operations
are im

plem
ented, only W

H
A
T they do

Classes & objects

• in Java, everything is part of som
e object

– all classes are derived from
 class O

bject

public class RE {
 String re; // regular expression
 int start, end; // of last match

 public RE(String r) {...} // constructor
 public int match(String s) {...}
 public int start() { return _start; }
 int matchhere(String re, String text) {...}

// or matchhere(String re, int ri, String text, int ti)

} • m
em

ber functions are defined inside the class
– internal variables defined but shouldn't be public
– internal functions shouldn't be public (e.g., m

atchhere)
• all objects are created dynam

ically
• have to call new to construct an object

 RE re;
// null: doesn't yet refer to an object

 re = new RE("abc*"); // now it does
 int m = re.match("abracadabra");
 int start = re.start();
 int end = re.end();

Constructors: m
aking a new object

 public RE(String re) {
 this.re = re;

 }

 RE r;
 r = new RE(s);

• "this" is the object being constructed or running
the code

• can use m
ultiple constructors with different

argum
ents to construct in different ways:

 public RE() { /* ??? */ }

Class variables & instance variables

• every object is an instance of som
e class

– created dynam
ically by calling new

• class variable: a variable declared static in class
– only one instance of it in the entire program

– exists even if the class is never instantiated
– the closest thing to a global variable in Java

 public class RE {
 static int num_REs = 0;

 public RE(String re) {
 num_REs++;
 ...
 }

• class m
ethods

– m
ost m

ethods associated with an object instance
– if declared static, associated with class itself
– e.g., m

ain()

Program
 structure

• typical structure is

class RE {

 private variables
 public RE methods, including constructor(s)
 private functions

 public static void main(String[] args) {
 extract re
 for (i = 1; i < args.length; i++)
 fin = open up the file...
 grep(re, fin)
 }
 static int grep(String regexp, FileReader fin) {
 RE re = new RE(regexp);
 for each line of fin
 if (re.match(line)) ...
 }
} • order doesn't m

atter

D
estruction & garbage collection

• interpreter keeps track of what objects are
currently in use

• m
em

ory can be released when last use is gone
– release does not usually happen right away
– has to be garbage-collected

• garbage collection happens autom
atically

– separate low-priority thread m
anages garbage

collection
• no control over when this happens

– can set object reference to null to encourage it

• Java has no destructor (unlike C++)
– can define a finalize() m

ethod for a class to reclaim

other resources, close files, etc.
– no guarantee that a finalizer will ever be called

• garbage collection is a great idea
– but this is not a great design

I/O
 and file system

 access

• im
port java.io.*

• byte I/O

– InputStream
 and O

utputStream

• character I/O
 (Reader, W

riter)
– InputReader and O

utputW
riter

– InputStream
Reader, O

utputStream
W

riter
– BufferedReader, BufferedW

riter

• file access
• buffering
• exceptions

• in general, use character I/O
 classes

Character I/O

• InputStream
Reader reads U

nicode chars
• O

utputStream
W

riter write U
nicode chars

• use Buffered(Reader|W
riter)

– for speed
– because it has a readLine m

ethod

public class cp4 {
public static void main(String[] args) {
 int b;
 try {
 BufferedReader bin = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(args[0])));
 BufferedWriter bout = new BufferedWriter(
 new OutputStreamWriter(
 new FileOutputStream(args[1])));

 while ((b = bin.read()) > -1)
 bout.write(b);
 bin.close();
 bout.close();
 } catch (IOException e) {
 System.err.println("IOException " + e);
 }
}

Line at a tim
e I/O

public class cat3 {

public static void main(String[] args) {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));
 BufferedWriter out = new BufferedWriter(
 new OutputStreamWriter(System.out));
 try {
 String s;
 while ((s = in.readLine()) != null) {
 out.write(s);
 out.newLine();
 }
 out.flush(); // required!!!
 } catch (Exception e) {
 System.err.println("IOException " + e);
 }
}

Exceptions

• C-style error handling
– ignore errors -- can't happen
– return a special value from

 functions, e.g.,
-1 from

 system
 calls like open()

N
U

LL from
 library functions like fopen()

• leads to com
plex logic

– error handling m
ixed with com

putation
– repeated code or goto's to share code

• lim
ited set of possible return values

– extra info via errno and strerr: global data
– som

e functions return all possible values
no possible error return value is available

• Exceptions are the Java solution (also in C++)
• exception indicates unusual condition or error
• occurs when program

 executes a throw statem
ent

• control unconditionally transferred to catch block
• if no catch in current function, passes to calling
m
ethod

• keeps passing up until caught
– ultim

ately caught by system
 at top level

try {…} catch {…}

• a m
ethod can catch exceptions

 public void foo() {
 try {

 // if anything here throws an IO
 exception

 // or a subclass, like FileN

otFoundException
 } catch (IO

Exception e) {
 // this code will be executed
 // to deal with it
 }

• or it can throw them
, to be handled by caller

• a m
ethod m

ust list exceptions it can throw
– exceptions can be thrown im

plicitly or explicitly

 public void foo() throws IO
Exception {

 // if anything here throws an exception
 // foo will throw an exception
 // to be handled by its caller
 }

W
hy exceptions?

• reduced com
plexity

– if a m
ethod returns norm

ally, it worked
– each statem

ent in a try block knows that the previous
statem

ents worked, without explicit tests
– if the try exits norm

ally, all the code in it worked
– error code grouped in a single place

• can't unconsciously ignore possibility of errors
– have to at least think about what exceptions can be

thrown

public static void main(String args[])
 throws IOException {
 int b;

 while ((b = System.in.read()) >= 0)
 System.out.write(b);
}

String m
ethods

• a String is sequence of U
nicode chars

– im
m

utable: each update m
akes a new String

s += s2 m
akes a new s each tim

e
– indexed from

 0 to str.length()-1

• useful String m
ethods

– charA
t(pos)

 character at pos
– substring(start, len) substring

 for (i = 0; i < s.length(); i++)
 if (s.charAt(i) != s.substring(i, 1))
 // can't happen

• String parsing

String[] fld = str.split("\\s+");

StringTokenizer st = new StringTokenizer
(str);

while (st.hasMoreTokens()) {
String s = st.nextToken();
...

}

"Real" exam
ple: regular expressions

• sim
ple class to look like RE

• uses the Java 1.4 regex m
echanism

• provides a better interface (or at least less clum

sy)

import java.util.regex.*;

public class RE {
 Pattern p;
 Matcher m;

 public RE(String pat) {
 p = Pattern.compile(pat);
 }
 public boolean match(String s) {
 m = p.matcher(s);
 return m.find();
 }
 public int start() {
 return m.start();
 }
 public int end() {
 return m.end();
 }
}

Java vs. C and C++

• no preprocessor
– import instead of #include
– constants use static final declaration

• C-like basic types, operators, expressions
– sizes, order of evaluation are specified

byte, short, int, long: signed integers (no unsigned)
char: unsigned 16-bit U

nicode character
boolean: true or false

• really object-oriented
– everything is part of som

e class
– objects all derived from

 O
bject class

– static m
em

ber function applies to whole class
• references instead of pointers for objects

– null references, garbage collection, no destructors
– == is object identity, not content identity

• all arrays are dynam
ically allocated

–  int[] a; a = new int[100];
• strings are m

ore or less built in
• C-like control flow, but

– labeled break and continue instead of goto
– exceptions: try {…} catch(Exception) {…}

• threads for parallelism
 within a single process

– in language, not a library add-on

