
Little languages

•  also called specialized, application-specific, domain-specific, ...

•  focused on a single area, not trying to be general purpose

•  often declarative (though not always)
–  some are Turing complete, many are not

•  examples
–  regular expressions, shell, AWK, XML, AMPL, …

•  definition is fuzzy

Anatomy of a compiler

input

tokens

intermediate form

object file

lexical analysis

syntax analysis

code generation

symbol table

input
data a.out output

linking

YACC and LEX
•  languages/tools for building [parts of] compilers and interpreters

•  YACC: "yet another compiler compiler" (Steve Johnson, ~1972)
–  converts a grammar and semantic actions into a parser for that grammar

•  LEX: lexical analyzer generator (Mike Lesk, ~1974)
–  converts regular expressions for tokens into a lexical analyzer that

recognizes those tokens

•  parser calls lexer each time it needs another input token
•  lexer returns a token and its lexical type

•  when to think of using them:
–  real grammatical structures (e.g., recursively defined)
–  complicated lexical structures
–  rapid development time is important
–  language design might change

YACC overview
•  YACC converts grammar rules & semantic actions into parsing fcn yyparse()

–  yyparse parses programs written in that grammar, performs semantic actions as
grammatical constructs are recognized

•  semantic actions usually build a parse tree
–  each node represents a particular syntactic type, children are components

•  actions could anything
–  run the program directly
–  interpret directly from the tree

at each node, interpret children (recursion), do operation of node itself, return result
–  generate byte code output to run elsewhere
–  generate internal byte code
–  generate some other language to be processed later

Grammar specified in YACC
•  grammar rules give syntax
•  action part of a rule gives semantics, usually used to build a parse tree

statement :
IF (expression) statement

 create node(IF, expr, stmt, 0)
IF (expression) statement ELSE statement

 create node(IF, expr, stmt1, stmt2)
WHILE (expression) statement

 create node(WHILE, expr, stmt)
variable = expression

 create node(ASSIGN, var, expr)
…

expression :
expression + expression
expression - expression
…

•  YACC creates a parser from this
•  when the parser runs, it creates a parse tree
•  a compiler walks the tree to generate code
•  an interpreter walks the tree to execute it
•  can even execute or generate code on the fly

Excerpts from a real grammar
 term:
 | term '+' term { $$ = op2(ADD, $1, $3); }
 | term '-' term { $$ = op2(MINUS, $1, $3); }
 | term '*' term { $$ = op2(MULT, $1, $3); }
 | term '/' term { $$ = op2(DIVIDE, $1, $3); }
 | term '%' term { $$ = op2(MOD, $1, $3); }
 | '-' term %prec UMINUS { $$ = op1(UMINUS, $2); }
 | INCR var { $$ = op1(PREINCR, $2); }
 | var INCR { $$ = op1(POSTINCR, $1); }

 stmt:
 | while {inloop++;} stmt {--inloop; $$ = stat2(WHILE,$1,$3);}
 | if stmt else stmt { $$ = stat3(IF, $1, $2, $4); }
 | if stmt { $$ = stat3(IF, $1, $2, NIL); }
 | lbrace stmtlist rbrace { $$ = $2; }

 while:
 WHILE '(' pattern rparen { $$ = notnull($3); }

Excerpt from a real grammar
•  precedence and associativity specified separate from grammar

 %right ASGNOP
 %left OR
 %left AND
 %nonassoc APPEND EQ GE GT LE LT NE MATCHOP IN
 %left CAT
 %left '+' '-'
 %left '*' '/' '%'
 %left NOT UMINUS
 %right POWER
 %right DECR INCR

Excerpts from a LEX analyzer
"++" { yylval.i = INCR; RET(INCR); }
"--" { yylval.i = DECR; RET(DECR); }

([0-9]+(\.?)[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)? {
 yylval.cp = setsymtab(yytext, tostring(yytext),
 atof(yytext), CON|NUM, symtab);
 RET(NUMBER); }

while { RET(WHILE); }
for { RET(FOR); }
do { RET(DO); }
if { RET(IF); }
else { RET(ELSE); }
return { if (!infunc)
 ERROR "return not in function" SYNTAX;
 RET(RETURN);
 }
• { RET(yylval.i = yytext[0]); /* everything else */ }

The whole process

YACC Lex (or other)

grammar lexical rules

other C code

C compiler

a.out

y.tab.c parser lex.yy.c analyzer

Example: Document preparation languages

•  illustrates topics of 333 in a different setting
–  tools
–  language design (good and bad); notation
–  evolution of software systems; maintenance
–  personal interest, research area for 10-20 years, heavy use in books

•  examples:
–  roff and related early formatters
–  nroff (Unix man command still uses it)
–  troff
–  TEX
–  HTML, etc.

–  all of these are “batch” commandline programs, not WYSIWYG

The roff family

•  commands on separate lines
 .sp 2!
 .in 5!
 This is a paragraph ...!

•  originally just for output on line printers (ASCII)
•  layout originally fixed

–  e.g., only one-column output
•  nroff added macros for notational convenience
•  and a trap mechanism for specifying page layout

–  awkward and tricky event-based programming model
–  Turing complete!

•  how much should be built in and how much programmable?
–  features versus extensibility

Troff: formatting for a (photo)typesetter

•  photypesetter produces output on photorgraphic paper or film
•  first high-quality output device at a reasonable price (~$15K)

–  predates laser printers by 5-10 years
–  predates Postscript (1982) by 10 years, PDF (1993) by 21 years
–  very klunky, slow, messy, expensive

•  troff: version of nroff for typesetters
–  adds features for size, font, precise positioning, bigger character sets
–  originally by Joe Ossanna (~1972); inherited by BWK ~1977

•  very complex program, very complex language
–  language reflects many of the weirdnesses of first typesetter

•  troff + phototypesetter produces book-quality output
–  Elements of Programming Style, Software Tools, …

More complicated and difficult material

•  mathematics
–  called “penalty copy” in the printing industry

•  tables
•  drawings
•  graphs
•  references
•  indexes

•  at the time, done by hand composition
–  not much better than medieval technology

•  Bell Labs authors writing papers and books with all of these
•  being done by manual typewriters

–  XXX can I find the paper with handwritten Greek letters?
•  how to handle them?

EQN: a language for typesetting mathematics

•  with Lorinda Cherry ~1974

•  idea: a language that matches the way mathematics is spoken
aloud

•  translate that into troff commands
–  since the language is so orthogonal, it wouldn’t fit directly
–  and there isn’t room anyway, since program has to be less than 65KB
–  troff is powerful enough

•  use a pipeline eqn | troff

•  like TEX, but simpler, easier (though not as systematic or powerful)
–  math mode in TEX comes from EQN

EQN examples
x sup 2 + y sup 2 = z sup 2!

f(t) = 2 pi int sin (omega t) dt!

lim from {x -> pi / 2} (tan x) = inf!

x = {-b +- sqrt {b sup 2 – 4ac} over 2a }!

EQN implementation

•  based on a YACC grammar
–  first use of YACC outside mainstream compilers

•  grammar is simple
–  box model
–  just combine boxes in various ways:

concatenate, above/below, sub and superscript, sqrt, ...

 eqn: box | eqn box
 box: text | { eqn } | box over box | sqrt box
 | box sub box | box sup box | box from box to box | ...

•  YACC makes experimental language design easy

Pic: a language for pictures (line drawings)

•  new typesetter has more capabilities (costs more too: $50K in 1977)

•  can we use troff to do line drawings?

•  answer: invent another language, again a preprocessor
–  add simple line-drawing primitives to troff: line, arc, spline

•  advantages of text descriptions of pictures
–  systematic changes easy, always correct dimensions,
–  Pic has loops, conditionals, etc., for repetitive structures

Turing complete!

•  implemented with YACC and LEX
–  makes it easy to experiment with syntax
–  human engineering:

free-form English-like syntax
implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS!
arrow "input" above!
box "process"!
arrow "output" above!
.PE

Pic examples
.PS!
line from (-.2,0) to (1,0) ->!
 " x" ljust at last line.end!
line from (0,-.2) to (0,.7) ->!
 "y" at last line.end above!
line from .1,.2 to .8,.2 to .8,.6 to .1,.6 to .1,.2!
bullet at .1,.2!
"\f(CWpt1\fP" ljust at (.2,.1)!
bullet at .8,.6!
" \f(CWpt2\fP" ljust at .8,.6!
.PE!

Pic examples
.PS!
define L { line from $1<B.nw,B.ne> to $1<B.sw,B.se> }!
A: "\f(CWa\fP:" wid .5!
B: box wid 3 ht .2 with .w at A.e; # "..." at .6<B.w,B.e>!
L(.1); L(.2); L(.3); L(.4); L(.5)!
L(.6); L(.7); L(.8); L(.9)!
"\f(CWa[0]\fP" ht .18 wid .3 with .nw at B.sw!
PA: box ht .2 wid .3 bullet at A + (0,.4)!
"\f(CWpa\fP:" wid .1 ht .15 with .s at PA.nw!
spline -> from PA right .2 then to B.nw +(.05,0.02)!
.PE!

Grap: a language for drawing graphs

•  line drawings, not “charts” in the Excel sense
•  with Jon Bentley, ~1984

•  a Pic preprocessor: grap | pic | troff

 .G1!
 0 0!
 1 1!
 2 4!
 3 9!
 4 16!
 5 25!
 .G2!

Notation matters

•  each of these languages has its own fairly natural notation
–  doesn’t work as well when force everything into one notation
–  but also can be hard to mix, e.g., equations in diagrams in tables

•  TEX/LATEX:
–  “math mode” is a different language
–  tables are mostly the same as underlying language
–  there are no drawings (?)

•  XML vocabularies put everything into a single notation
–  except for the specific tags and attributes
–  bulky, inconvenient, but uniform

HTML / XHTML / XML

•  HTML is a batch-mode markup language
•  similar to TEX except very simple
•  layout control is tricky

–  as in troff and TEX
•  tables, but no math, no drawings

•  MathML: XML vocabulary for mathematical expressions

•  SVG (Scalable Vector Graphics): XML vocabulary for drawings
 (and more)

•  two problems at least
–  MathML and SVG are unusable by humans
–  MathML doesn’t work consistently (if at all) in current browsers

