
Evolution of Programming Languages 

•  40's  machine level 
–  raw binary 

•  50's  assembly language 
–  names for instructions and addresses 
–  very specific to each machine 

•  60's  high-level languages: Fortran, Cobol, Algol, Basic 
•  70's   system programming languages: C, PL/1, Algol 68, Pascal 
•  80's   object-oriented languages: C++, Ada, Smalltalk, Objective C, … 

strongly typed (to varying degrees) 
better control of large programs (at least in theory) 
better internal checks, organization, safety 

•  90's   scripting, Web, component-based, …: Perl, Java, Visual Basic, … 
glue 

•  00's  Web server and client: Python, PHP, Ruby, Javascript, ... 
focus on interfaces, components; frameworks  



Program structure issues 
•  how to cope with ever bigger programs? 
•  objects 

–  user-defined data types 
•  components 

–  related objects 
•  frameworks 

–  automatic generation of routine code 
•  interfaces 

–  boundaries between code that provides a service and code that uses it 
•  information hiding 

–  what parts of an implementation are visible 
•  resource management 

–  creation and initialization of entities 
–  maintaining state 
–  ownership: sharing and copying 
–  memory management 
–  cleanup 

•  error handling; exceptions 



Complicated data types in C 
•  representation is visible, can't be protected 

–  opaque types are sort of an exception 
•  creation and copying must be done very carefully 

–  and you don't get any help with them 
•  no initialization 

–  you have to remember to do it 
•  no help with deletion 

–  you have to recover the allocated memory when no longer in use 
•  weak argument checking between declaration and call 

–  easy to get inconsistencies 
•  the real problem: no abstraction mechanisms 

–  complicated data structures can be built, 
   but access to the representation can't be controlled 
–  you can't change your mind once the first implementation has been done 

•  abstraction and information hiding are  
    nice for small programs,absolutely necessary for big programs  



C++ 
•  designed & implemented by Bjarne Stroustrup  

–  began ~ 1980; ISO standard in 1998; still evolving (C++11 in Sept 2011) 
•  a better C 

–  almost completely upwards compatible with C 
–  more checking of interfaces (e.g., function prototypes, added to ANSI C) 
–  other features for easier programming 

•  data abstraction 
–  methods reveal only WHAT is done 
–  classes hide HOW something is done in a program, can be changed as 

program evolves 
•  object-oriented programming 

–  inheritance -- define new types that inherit properties from previous types 
–  polymorphism or dynamic binding -- function to be called is determined by 

data type of specific object at run time 
•  templates or "generic" programming 

–  compile-time parameterized types 
–  define families of related types, where the type is a parameter 

•  a "multi-paradigm" language 
–  lots of ways to write code 



C++ classes 
•  data abstraction and protection mechanism derived from Simula 67  

(Kristen Nygaard, Norway) 

class Thing { 
  public: 

   methods -- functions for operations that can be done on this kind of object 
  private: 

   variables and functions that  implement the operations 
}; 

•  defines a data type 'Thing' 
–  can declare variables and arrays of this type, create pointers to them, pass 

them to functions, return them, etc. 
•  object:  an instance of a class variable 
•  method: a function defined within the class  
•  private variables & functions not accessible from outside the class 
•  it is not possible to determine HOW the operations are 
implemented, only WHAT they do. 



C++ synopsis 
•  data abstraction with classes 

–  a class defines a type that can be used to 
declare variables of that type, control access to representation 

•  operator and function name overloading 
–  all C operators (including =, +=..., ( ), [ ], ->, argument passing and function 

return but not . and ?:) can be overloaded to apply to user-defined types 
•  control of creation and destruction of objects  

–  initialization of class objects, recovery of resources on destruction 
•  inheritance: derived classes built on base classes 

–  virtual functions override base functions 
–  multiple inheritance: inherit from more than one class 

•  exception handling 
•  namespaces for separate libraries 
•  templates (generic types) 

–  Standard Template Library: generic algorithms on generic containers   
–  template metaprogramming: execution of C++ code during compilation 

•  compatible (almost) with C except for new keywords 



Topics 

•  basics 
•  memory management, new/delete 
•  operator overloading 
•  references 

–  controlled behind-the-scenes pointers 
•  constructors, destructors, assignment 

–  control of creation, copying and deletion of objects 
•  inheritance 

–  class hierarchies 
–  dynamic types (polymorphism) 

•  templates 
–  compile-time parameterized types 

•  Standard Template Library 
–  container classes, generic algorithms, iterators, function objects 

•  performance 



Stack class in C++ 
// stk1.c:   simple-minded stack class 
class stack { 
   private:    // default visibility 
        int stk[100]; 
        int *sp; 
   public: 
        int push(int); 
        int pop(); 
        stack();     // constructor decl 
}; 

int stack::push(int n) { 
        return *sp++ = n; 
} 
int stack::pop() { 
        return *--sp; 
} 
stack::stack() { // constructor implementation 
  sp = stk; 
}  

stack s1, s2;   // calls constructors 
s1.push(1);     // method calls 
s2.push(s1.pop()); 



Inline definitions 

• member function body can be written inside the class 
definition 

•  this normally causes it to be implemented inline 
–  no function call overhead 

// stk2.c:   inline member functions 

class stack { 
    int stk[100]; 
    int *sp;   
  public: 
    int push(int n)  { return *sp++ = n; } 
    int pop()        { return *--sp; } 
    stack()          { sp = stk; }   
}; 



Memory allocation: new and delete 
• new is a type-safe alternative to malloc 

–  delete is the matching alternative to free 
• new T allocates an object of type T, returns pointer to it 

      stack *sp = new stack; 
• new T[n] allocates array of T's, returns pointer to first 

    int *stk = new int[100]; 
–  by default, throws exception if no memory 

• delete p frees the single item pointed to by p 
    delete sp; 

• delete [] p frees the array beginning at p 
    delete [] stk; 

• new uses T's constructor for objects of type T 
–  need a default constructor for array allocation 

• delete uses T's destructor ~T() 
•  use new/delete instead of malloc/free 

–  malloc/free provide raw memory but no semantics 
–  this is inadequate for objects with state 
–  never mix new/delete and malloc/free 



Dynamic stack with new, delete 
// stk3.c: new, destructors, delete 

class stack { 
  private: 
        int *stk;     // allocated dynamically 
        int *sp;      // next free place 
  public: 
        int push(int); 
        int pop(); 
        stack();    // constructor 
        stack(int n); // constructor 
        ~stack();     // destructor 
}; 

stack::stack() { 
        stk = new int[100];  sp = stk; 
} 
stack::stack(int n) { 
        stk = new int[n];  sp = stk; 
} 
stack::~stack() {  
        delete [ ] stk;  
} 



Constructors and destructors 
•  constructor:  
   creating a new object (including initialization) 

–  implicitly, by entering the scope where it is declared 
–  explicitly, by calling  new 

•  destructor: 
   destroying an existing object (including cleanup) 

–  implicitly, by leaving the scope where it is declared 
–  explicitly, by calling delete on an object created by new 

•  construction includes initialization, so it may be parameterized 
–  by multiple constructor functions with different args 
–  an example of function overloading 

• new can be used to create an array of objects 
–  in which case delete can delete the entire array 



Implicit and explicit allocation and deallocation 

•  implicit: 

 f() { 
     int i; 
     stack s;      // calls constructor stack::stack() 
     ... 
     // calls s.~stack() implicitly 
 } 

•  explicit: 

 f() { 
     int *ip = new int; 
     stack *sp = new stack;    // calls stack::stack() 
     ... 
     delete sp; // calls sp->~stack() 
     delete ip; 
     ... 
 } 



Constructors; overloaded functions  
•  two or more functions can have the same name if the number and/
or types of arguments are different 

abs(int);   abs(double);   abs(complex) 
atan(double x);    atan(double y, double x); 

int abs(int x) { return x >= 0 ? x : -x; } 
double abs(double x) { return x >= 0 ? x : -x; } 

… 

•  multiple constructors for a class are a common instance 

stack::stack( ); 
stack::stack(int stacksize); 

stack s;   // default stack::stack() 
stack s1();   // same 
stack s2(100);  // stack::stack(100) 
stack s3 = 100;  // also stack::stack(100) 



Overloaded functions; default args 

•  default arguments: syntactic sugar for a single function 
stack::stack(int n = 100); 

•  declaration can be repeated if the same 

•  explicit size in call 
  stack s(500); 
•  omitted size uses default value 
  stack s; 

•  overloaded functions: different functions, distinguished by 
argument types 

•  these are two different functions: 
  stack::stack(int n); 
  stack::stack(); 



Operator overloading 
•  almost all C operators can be overloaded 

–  a new meaning can be defined when one operand of an operator is a user-
defined (class) type 

–  define operator + for object of type T 
T T::operator+(int n) {...} 
T T::operator+(double d) {...} 

–  define regular + for object(s) of type T 
T operator +(T f, int n) {...} 

–  can't redefine operators for built-in types 
int operator +(int, int)  is ILLEGAL 

–  can't define new operators 
–  can't change precedence and associativity 

e.g., ^ is low precedence even if used for exponentiation 
•  3 short examples 

–  complex numbers:  overloading arithmetic operators 
–  IO streams:  overloading << and >> for input and output 
–  subscripting:  overloading [ ] 

•  later:  overloading assignment and function calls 



Complex numbers 
•  a complex number is a pair of doubles: (real part, imaginary part) 
•  supports arithmetic operations like +, - 
•  an arithmetic type for which operator overloading makes sense 

–  complex added as explicit type in 1999 C standard 
–  in C++, can create it as needed 

use extension mechanism instead of extending language 

•  also illustrates... 

• friend declaration 
–  mechanism for controlled exposure of representation 
–  classes can share representation 

•  default constructors 
–  use of default arguments to simplify declarations 

•  implicit coercions 
–  generalization of C promotion rules, based on constructors 



An implementation of complex class 
class complex { 
    double re, im; 
  public: 
    complex(double r = 0, double i = 0)     
        { re = r; im = i; }  // constructor 

    friend complex operator +(complex,complex); 
    friend complex operator *(complex,complex); 
}; 

complex operator +(complex c1, complex c2) { 
    return complex(c1.re+c2.re, c1.im+c2.im); 
} 

•  complex declarations and expressions 
   complex a(1.1, 2.2), b(3.3), c(4), d; 

   d = 2 * a; 
        2 coerced to 2.0 (C promotion rule) 
           then constructor invoked to make complex(2.0, 0.0) 

•  operator overloading works well for arithmetic types 



References: controlled pointers 
•  need a way to access object, not a copy of it 
•  in C, use pointers 

void swap(int *x, int *y) { 
int temp; 
temp = *x; *x = *y; *y = temp; 

} 
swap(&a, &b); 

•  in C++, references attach a name to an object 
•  a way to get "call by reference" (var) parameters without using 
explicit pointers 

void swap(int &x, int &y) { 
int temp; 
temp = x; x = y; y = temp; 

} 
swap(a, b);   // pointers are implicit 

•  because it's really a pointer, a reference provides a way to 
access an object without copying it 



A vector class: overloading [ ] 
class ivec {  // vector of ints 
   int *v;         // pointer to an array 
   int size;       // number of elements 
  public: 
   ivec(int n) { v = new int[size = n]; } 

   int& operator [](int n) {  // checked 
      assert(n >= 0 && n < size); 
      return v[n];  
   } 
}; 

   ivec iv(10);   // declaration 
   iv[10] = 1;    // checked access on left side of = 

•  operator[ ] returns a reference 
•  a reference gives access to the object so it can be changed 
•  necessary so we can use [ ] on left side of assignment 



Iostreams: overloading >> and << 
•  I/O of user-defined types without  
  function-call syntax 

•  C printf and scanf can be used in C++ 
–  no type checking 
–  no mechanism for I/O of user-defined types 

•  Java System.out.printf(arglist) 
–  does some type checking 
–  basically just calls toString method for each item 

•  Iostream library 
–  overloads << for output, >> for input 
–  permits I/O of sequence of expressions 
–  natural integration of I/O for user-defined types 

same syntax and semantics as for built-in types 
–  type safety for built-in and user-defined types 



Output with iostreams 
•  overload operator << for output 

–  very low precedence 
–  left-associative, so  

cout << e1 << e2 << e3 
–  is parsed as 

(((cout << e1) << e2) << e3) 

#include <iostream> 
  ostream& operator<<(ostream& os, const complex& c) { 

  os << "(" << c.real() << ", " << c.imag() << ")"; 
  return os; 

  } 

•  takes a reference to iostream and data item 
•  returns the reference so can use same iostream for next expression 
•  each item is converted into the proper type  
•  iostreams  cin, cout, cerr already open 

–  corresponding to stdin, stdout, stderr 



Input with iostreams 
•  overload operator >> for input 

–  very low precedence 
–  left-associative, so  

cin >> e1 >> e2 >> e3 
–  is parsed as 

(((cin >> e1) >> e2) >> e3) 

   char name[100]; 
   double val; 

   while (cin >> name >> val) { 
      cout << name << " = "  
           << val << "\n"; 
   } 

•  takes a reference to iostream and reference to data item 
•  returns the reference so can use same iostream for next expression  
•  each item is converted into the proper type 

 cin >> name  calls  istream& operator >>(istream&, char*) 



Formatter in C++ 
#include <iostream> 
#include <string> 
using namespace std; 

const int maxlen = 60; 
string line; 
void addword(const string&); 
void printline(); 

main(int argc, char **argv) { 
   string word; 
   while (cin >> word) 
      addword(word); 
   printline(); 
} 
void addword(const string& w) { 
   if (line.length() + w.length() > maxlen) 
      printline(); 
   if (line.length() > 0) 
      line += " "; 
   line += w; 
} 
void printline() { 
   if (line.length() > 0) { 
      cout << line << endl; 
      line = ""; 
   } 
} 



Summary of references 

•  reference is in effect a very constrained pointer 
–  points to a specific object 
–  can't be changed, though whatever it points to can certainly be changed 

•  provides control of pointer operations for applications where 
addresses must be passed for access to an object 
–  e.g., a function that will change something in the caller 
–  like swap(x, y) 

•  provides notational convenience 
–  compiler takes care of all * and & properly 

•  permits some non-intuitive operations like the overloading of [] 
–  int &operator[] permits use of [] on left side of assignment 
–  v[e] means v.operator[...](e) 


