
Libraries, API's, Frameworks
•  browsers are not perfectly standardized
•  DOM and CSS coding is messy and complicated
•  web services are ever more complex

•  how do we make it easy to create applications?

•  libraries of common Javascript operations

•  API's, often Javascript, to access services

•  frameworks: development environments for integrated client &
server programming

From developer.yahoo.com
YAHOO.util.Connect = {
 _msxml_progid:[
 'MSXML2.XMLHTTP.5.0',
 'MSXML2.XMLHTTP.4.0',
 'MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'
],
 createXhrObject:function(transactionId) {
 var obj,http;
 try {
 http = new XMLHttpRequest();
 obj = { conn:http, tId:transactionId };
 }
 catch(e) {
 for (var i=0; i<this._msxml_progid.length; ++i){
 try {
 http = new ActiveXObject(this._msxml_progid[i]);
 obj = { conn:http, tId:transactionId };
 break;
 }
 catch(e){}
 }
 }
 finally {
 return obj;
 }
 }, ...

Javascript libraries
•  library of Javascript functions that typically provides

–  easier access to DOM
–  convenience functions for arrays, iterators, etc.
–  uniform interface to Ajax
–  visual effects like fading, flying, folding, ...
–  drag and drop
–  in-place editing
–  extensive set of widgets: calendar, slider, progress bar, tabs, ...

•  there are lots of such libraries
–  jQuery, jQueryUI, Dojo, Yahoo User Interface (YUI), mooTools,
 Prototype / Scriptaculous, ...

•  see http://code.google.com/apis/libraries/!
–  single library for uniform access to ~10 Javascript libraries
–  experiment at http://code.google.com/apis/ajax/playground!

Basic structure of Ajax code in browser
var req;
function geturl(s) {
 if (s.length > 1) {
 url = 'http://www.cs.princeton.edu/~bwk/phone3.cgi?' + s;
 loadXMLDoc(url); // loads asynchronously
 }
}
function loadXMLDoc(url) {
 req = new XMLHttpRequest();
 if (req) {
 req.onreadystatechange = processReqChange;
 req.open("GET", url);
 req.send(null);
 }
}
function processReqChange() {
 if (req.readyState == 4) { // completed request
 if (req.status == 200) // successful
 show(req.responseText); // could be responseXML
 }
}
function show(s) { // show whatever came back
 document.getElementById("place").innerHTML = s
}

jQuery example

<script>!
 function geturl(s) {!
 if (s.length > 1) {!
 var url = 'http://www.cs.princeton.edu/!
 ~bwk/phone3.cgi?' + s;!
 $.get(url, function(res) {!
 $('pre').empty().append(res);;!
 });!
 }!
 }!
</script>!
<form name=phone>!
Type here: !
 <input type="text" id="pat" onkeyup='geturl(pat.value);'>!
</form>!
<pre id="place"></pre>!

Debugging Javascript

•  it's hard
•  use var declarations, check balanced quotes, braces, brackets, …
•  in Chrome

–  "wrench" / Tools / Javascript console
•  in Firefox

–  Tools / Web developer / Web Console

•  use console.log to write debugging output
–  like printf
–  much better than alert(…) for most things

Google maps API (version 3)

<style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0px; padding: 0px }
 #map { height: 100% }
</style>
<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
 function initialize() {
 var latlong = new google.maps.LatLng(40.34705, -74.65495);
 var opts = {
 zoom: 18, center: latlong,
 mapTypeId: google.maps.MapTypeId.HYBRID };
 var map = new google.maps.Map(document.getElementById("map"), opts);
 var marker = new google.maps.Marker({
 position: latlong, map: map, title:"You are here, more or less" });
 }

</script>
</head>
<body onload="initialize()">
 <div id="map" style="width:100%; height:100%"></div>

Web [Application] Frameworks
•  conventional approach to building a web service

–  write ad hoc client code in HTML, CSS, Javascript, ... by hand
–  write ad hoc server code in [whatever] by hand
–  write ad hoc access to [whatever] database system

•  so well understood that it's almost mechanical
•  web frameworks mechanize (parts of) this process
•  lots of tradeoffs and choices

–  what client and server language(s)
–  how web pages are generated
–  how web events are linked to server actions
–  how database access is organized (if at all)

•  can be a big win, but not always
–  somewhat heavyweight
–  easy to lose track of what's going on in multiple layers of generated software
–  work well if your application fits their model, less well if it doesn't

•  examples:
–  Ruby on Rails
–  Django
–  Google Web Toolkit
–  Zend (PHP), ASP.NET (C#, VB.NET), and many others

Django
•  by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)

•  a collection of Python scripts to

•  create a new project / site
–  generates Python scripts for settings, etc.
–  configuration info stored as Python lists

•  creat a new application within a project
–  generates scaffolding/framework for models, views

•  run a development web server for local testing

•  generate a database or build interface to an existing database
•  provide a command-line interface to application
•  create an administrative interface for the database
•  ...

Django Reinhart, 1910-1953

Django web framework

•  write client code in HTML, CSS, Javascript, ...
–  Django template language helps separate form from content

•  write server code in Python
–  some of this is generated for you

•  write database access with Python library calls
–  they are translated to SQL database commands

•  URLs on web page map mechanically to Python function calls
–  regular expressions specify classes of URLs
–  URL received by server is matched against regular expressions
–  if a match is found, that identifies function to be called
 and arguments to be provided to the function

Conventional approach to building a web site
•  user interface, logic, database access are all mixed together

import MySQLdb
print "Content-Type: text/html"
print
print "<html><head><title>Books</title></head>"
print "<body>"
print "<h1>Books</h1>"
print ""
connection = MySQLdb.connect(user='me', passwd='x', db='my_db')
cursor = connection.cursor()
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC")
for row in cursor.fetchall():
 print "%s" % row[0]
print ""
print "</body></html>"
connection.close()

Model-View-Controller (MVC) pattern
•  an example of a design pattern
•  model: the structure of the data

–  how data is defined and accessed
•  view: the user interface

–  what it looks like on the screen
–  can have multiple views for one model

•  controller: how information is moved around
–  processing events, gathering and processing data,
 generating HTML, ...

•  separate model from view from processing so that when one
changes, the others need not

•  used with varying fidelity in
–  Django, App Engine, Ruby on Rails, XCode Interface Builder, ...

•  not always clear where to draw the lines
–  but trying to separate concerns is good

Django approach
•  generate framework/skeleton of code by program

 # models.py (the database tables)

 from django.db import models
 class Book(models.Model):
 name = models.CharField(maxlength=50)
 pub_date = models.DateField()

 # views.py (the business logic)
 from django.shortcuts import render_to_response
 from models import Book

 def latest_books(request):
 book_list = Book.objects.order_by('-pub_date')[:10]
 return render_to_response('latest_books.html',
 {'book_list': book_list})

 # urls.py (the URL configuration)
 from django.conf.urls.defaults import *
 import views

 urlpatterns = patterns('',
 (r'latest/$', views.latest_books),
)

djangobook.com

Database linkage
DATABASES = {!
 'default': {!
 'ENGINE': 'django.db.backends.sqlite3', !
 'NAME': '/Users/bwk/dj1/mysite/sql3.db', ... !

from django.db import models!
class Books(models.Model):!
 isbn = models.CharField(max_length=15)!
 title = models.CharField(max_length=35)!
 author = models.CharField(max_length=35)!
 price = models.FloatField()!

BEGIN;!
CREATE TABLE "db1_books" (!
 "id" integer NOT NULL PRIMARY KEY,!
 "isbn" varchar(15) NOT NULL,!
 "title" varchar(35) NOT NULL,!
 "author" varchar(35) NOT NULL,!
 "price" real NOT NULL!
);!

in settings.py

in models.py

generated by Django

URL patterns
•  regular expressions used to recognize parameters and pass them

to Python functions
•  provides linkage between web page and what functions are called

for semantic actions

 urlpatterns = patterns('',
 (r'^time/$', current_datetime),
 (r'^time/plus/(\d{1,2})/$', hours_ahead),
)

•  a reference to web page time/ calls the function
 current_datetime()

•  tagged regular expressions for parameters: url time/plus/12
 calls the function
 hours_ahead(12)

Administrative interface
•  most systems need a way to modify the database even if initially

created from bulk data
–  add / remove users, set passwords, ...
–  add / remove records
–  fix contents of records
–  ...

•  often requires special code

•  Django generates an administrative interface automatically
–  loosely equivalent to MyPhpAdmin

 urlpatterns = patterns('',
 ...
 # Uncomment this for admin:
 # (r'^admin/', include('django.contrib.admin.urls')),

Google Web Toolkit (GWT) (first available May 2006)

•  write client (browser) code in Java
–  widgets, events, layout loosely similar to Swing

•  test client code on server side
–  test browser, or plugin for testing with real browser on local system

•  compile Java to Javascript and HTML/CSS
–  [once it works]

•  use generated code as part of a web page
–  generated code is browser independent (diff versions for diff browsers)

•  can use development environments like Eclipse
–  can use JUnit for testing

•  strong type checking on source
–  detect typos, etc., at compile time (unlike Javascript)

•  doesn't handle all Java runtime libraries
–  ?

•  no explicit support for database access on server
–  use whatever package is available

"Same Origin Policy"
•  "The same origin policy prevents a document or script loaded

from one origin from getting or setting properties of a document
from another origin. This policy dates all the way back to
Netscape Navigator 2.0." (Mozilla)

•  "The SOP states that JavaScript code running on a web page
may not interact with any resource not originating from the
same web site." (Google)

•  basically Javascript can only reference information from the
site that provided the original code

•  BUT: if a page loads Javascript from more than one site (e.g.,
as with cookies from third-party sites), then that JS code can
interact with that third-party site

GWT assessment
•  problem: Javascript is irregular, unsafe, not portable, easily

abused

•  solution: use Java, which is type-safe, standard, portable
• 
•  translate Java to Javascript to either be browser independent
 or tailored to specific browser as appropriate
•  can take advantage of browser quirks, make compact code,
 discourage reverse engineering
•  can provide standardized mechanisms for widgets, events,
 DOM access, server access, AJAX, RE's and other libraries,
 ...

•  in effect, treat each browser as a somewhat irregular machine
and compile optimized code for it specifically

GWT vs Django
•  focusing on different parts of the overall problem

•  GWT provides
–  reliable, efficient, browser-independent Javascript (from Java)
–  extensive widget set
–  no help with database access, generating HTML, …

•  Django provides
–  no Javascript help
–  no widgets
–  easy database access; template language for generating HTML, …
–  easy linkage from URLs on web page to Python functions

•  is GWT + App Engine a good combination?

Assessment of Web Frameworks
•  advantages

–  takes care of repetitive parts
more efficient in programmer time

–  automatically generated code is likely to be more reliable, have more
uniformity of structure

–  "DRY" (don't repeat yourself) is encouraged
–  "single point of truth"

information is in only one place so it's easier to change things
–  ...

•  potential negatives
–  automatically generated code

can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

–  systems are large and can be slow
–  ...

•  read Joel Spolsky's "Why I hate frameworks"
 http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12

Assessment of Ajax-based systems
•  potential advantages

–  can be much more responsive (cf Google maps)
–  can off-load work from server to client
–  code on server is not exposed
–  continuous update of services

•  potential negatives
–  browsers are not standardized
–  Javascript code is exposed to client
–  Javascript code can be bulky and slow
–  asynchronous code can be tricky
–  DOM is very awkward
–  browser history not maintained without effort

•  what next? (changing fast)
–  more and better libraries
–  better tools and languages for programming
–  better standardization?
–  will the browser ever replace the OS?

