Libraries, API's, Frameworks

browsers are not perfectly standardized
DOM and CSS coding is messy and complicated
web services are ever more complex

how do we make it easy to create applications?
libraries of common Javascript operations

API's, often Javascript, to access services

frameworks: development environments for integrated client &
server programming

From developer.yahoo.com

YAHOO.util.Connect = {
_msxml progid: [
'MSXML2 . XMLHTTP.5.0"',
'MSXML2 . XMLHTTP.4.0',
'MSXML2 . XMLHTTP.3.0"',
'MSXML2 . XMLHTTP',
'Microsoft.XMLHTTP'
] 14
createXhrObject: function (transactionId) {
var obj, http;
try {
http = new XMLHttpRequest() ;
obj = { conn:http, tId:transactionId };
}
catch(e) {
for (var i=0; i<this. msxml progid.length; ++i) {
try {
http = new ActiveXObject(this. msxml progid[i]) ;
obj = { conn:http, tId:transactionId };
break;

}
catch(e) {}

}
finally {

return obj;
}
b,

Javascript libraries

library of Javascript functions that typically provides
- easier access to DOM
- convenience functions for arrays, iterators, etc.
- uniform interface to Ajax
- visual effects like fading, flying, folding, ...
- drag and drop
- in-place editing
- extensive set of widgets: calendar, slider, progress bar, tabs, ...

there are lots of such libraries
- JQuery, jQueryUI, Dojo, Yahoo User Interface (YUI), mooTools,
Prototype / Scriptaculous, ...

see http://code.google.com/apis/libraries/
- single library for uniform access to ~10 Javascript libraries
- experiment at http://code.google.com/apis/ajax/playground

Basic structure of Ajax code in browser

var req;
function geturl(s) {
if (s.length > 1) {
url = 'http://www.cs.princeton.edu/~bwk/phone3.cgi?' + s;
loadXMLDoc (url); // loads asynchronously
}
}
function loadXMLDoc (url) {
req = new XMLHttpRequest() ;
if (req) {
req.onreadystatechange = processReqChange;
req.open ("GET", url);
req.send (null) ;
}
}
function processReqChange () {
if (req.readyState == 4) { // completed request
if (req.status == 200) // successful
show (req.responseText); // could be responseXML
}
}
function show(s) { // show whatever came back
document.getElementById("place") .innerHTML = s
}

jQuery example

<script>
function geturl(s) {
if (s.length > 1) {
var url = 'http://www.cs.princeton.edu/
~bwk/phone3.cgi?’' + s;
S$.get(url, function(res) {
S('pre').empty() .append(res);;
})i

}

</script>
<form name=phone>
Type here:
<input type="text" id="pat" onkeyup='geturl(pat.value); '>
</form>
<pre id="place"></pre>

Debugging Javascript

it's hard

use var declarations, check balanced quotes, braces, brackets, ..

in Chrome
- "wrench" / Tools / Javascript console

in Firefox
- Tools / Web developer / Web Console

use console.log to write debugging output
- like printf
- much better than alert(..) for most things

Google maps APT (version 3)

<style type="text/css">
html { height: 100% }
body { height: 100%; margin: Opx; padding: Opx }
#map { height: 100% }
</style>
<script type="text/javascript"
src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
function initialize () {
var latlong = new google.maps.LatLng(40.34705, -74.65495);
var opts = {
zoom: 18, center: latlong,
mapTypeld: google.maps.MapTypeld.HYBRID };
var map = new google.maps.Map (document.getElementById("map"), opts);
var marker = new google.maps.Marker ({
position: latlong, map: map, title:"You are here, more or less" });

}

</script>
</head>
<body onload="initialize () ">
<div id="map" style="width:100%; height:100%"></div>

Web [Application] Frameworks

conventional approach to building a web service
- write ad hoc client code in HTML, CSS, Javascript, ... by hand
- write ad hoc server code in [whatever] by hand
- write ad hoc access to [whatever] database system
so well understood that it's almost mechanical
web frameworks mechanize (parts of) this process
lots of tradeoffs and choices
- what client and server language(s)
- how web pages are generated
- how web events are linked to server actions
- how database access is organized (if at all)
can be a big win, but not always
- somewhat heavyweight
- easy to lose track of what's going on in multiple layers of generated software
- work well if your application fits their model, less well if it doesn't
examples:
- Ruby on Rails
- Django
- Google Web Toolkit
- Zend (PHP), ASP.NET (C#, VB.NET), and many others

Django

by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)
a collection of Python scripts to

create a new project / site
- generates Python scripts for settings, etc.
- configuration info stored as Python lists . ‘

creat a new application within a project Django Reinhart, 1910-1953
- generates scaffolding/framework for models, views

run a development web server for local testing

generate a database or build interface to an existing database
provide a command-line interface to application
create an administrative interface for the database

Django web framework

write client code in HTML, CSS, Javascript, ...

- Django template language helps separate form from content
write server code in Python

- some of this is generated for you

write database access with Python library calls
- they are translated to SQL database commands

URLs on web page map mechanically to Python function calls
- reqgular expressions specify classes of URLs
- URL received by server is matched against regular expressions
- if amatch is found, that identifies function to be called
and arguments to be provided to the function

Conventional approach to building a web site

- user interface, logic, database access are all mixed together

import MySQLdb

print "Content-Type: text/html"

print

print "<html><head><title>Books</title></head>"

print "<body>"

print "<hl>Books</hl1l>"

print ""

connection = MySQLdb.connect (user="me', passwd='x', ='my db')

cursor = connection.cursor ()
cursor.execute ("SELECT name FROM books ORDER BY pub date DESC")
for row in cursor.fetchall():
print "<1i>%s</1i>" % row[O0]
print ""
print "</body></html>"
connection.close ()

Model-View-Controller (MVC) pattern

an example of a design pattern
model: the structure of the data
- how data is defined and accessed
view: the user interface

- what it looks like on the screen
- can have multiple views for one model

controller: how information is moved around
- processing events, gathering and processing data,
generating HTML, ...

separate model from view from processing so that when one
changes, the others need not

used with varying fidelity in
- Django, App Engine, Ruby on Rails, XCode Interface Builder, ...

not always clear where to draw the lines
- but trying to separate concerns is good

Django approach 0

The Definitive Guide to

+ generate framework/skeleton of code by program django

Web Development Done Right

models.py (the database tables)

from django.db import models Adrian Holovaty

class Book (models.Model) : e i
name = models.CharField (maxlength=50)

pub_date = models.DateField()

Apress

djangobook.com

views.py (the business logic)
from django.shortcuts import render to response
from models import Book

def latest books (request):
book list = Book.objects.order by ('-pub date') [:10]
return render to response('latest books.html',
{' book list': book_list})

urls.py (the URL configuration)
from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',
(r'latest/$', views.latest books),

)

Database linkage

DATABASES = { I
In settings.
'default': { J5-PY
"ENGINE': 'django.db.backends.sqlite3’,

'"NAME': '/Users/bwk/djl/mysite/sql3.db', ...

from django.db import models
class Books (models.Model):

isbn = models.CharField(max_length=15)
title = models.CharField(max_length=35)
author = models.CharField(max_length=35)

price = models.FloatField()

BEGIN;
CREATE TABLE "dbl_books" (
"id" integer NOT NULL PRIMARY KEY,
"isbn" varchar(15) NOT NULL,
"title" varchar(35) NOT NULL,
"author" varchar(35) NOT NULL,
"price"” real NOT NULL

in models.py

generated by Django

URL patterns

regular expressions used to recognize parameters and pass them
to Python functions

provides linkage between web page and what functions are called
for semantic actions

urlpatterns = patterns('',
(r'~time/$', current datetime),
(r'~time/plus/(\d{1,2})/$', hours_ahead),

)

a reference to web page time/ calls the function
current datetime ()

tagged regular expressions for parameters: url time/plus/12

calls the function
hours ahead (12)

Administrative interface

most systems need a way to modify the database even if initially
created from bulk data

- add / remove users, set passwords, ...

- add / remove records

- fix contents of records

often requires special code

Django generates an administrative interface automatically
- loosely equivalent to MyPhpAdmin

urlpatterns = patterns('',

Uncomment this for admin:

(r'“~admin/', include('django.contrib.admin.urls')),

Google Web Toolkit (GWT) (first available May 2006)

write client (browser) code in Java

- widgets, events, layout loosely similar to Swing

test client code on server side

- test browser, or plugin for testing with real browser on local system
compile Java to Javascript and HTML/CSS

- [once it works]

use generated code as part of a web page

- generated code is browser independent (diff versions for diff browsers)
can use development environments like Eclipse

- can use JUnit for testing

strong type checking on source

- detect typos, etc., at compile time (unlike Javascript)
doesn't handle all Java runtime libraries

-2

no explicit support for database access on server
- use whatever package is available

"Same Origin Policy"

"The same origin policy prevents a document or script loaded
from one origin from getting or setting properties of a document
from another origin. This policy dates all the way back to
Netscape Navigator 2.0." (Mozilla)

"The SOP states that JavaScript code running on a web page
may not interact with any resource not originating from the
same web site." (Google)

basically Javascript can only reference information from the
site that provided the original code

BUT: if a page loads Javascript from more than one site (e.g.,
as with cookies from third-party sites), then that JS code can
inferact with that third-party site

GWT assessment

problem: Javascript is irregular, unsafe, not portable, easily
abused

solution: use Java, which is type-safe, standard, portable

translate Java to Javascript to either be browser independent
or tailored to specific browser as appropriate

can take advantage of browser quirks, make compact code,
discourage reverse engineering

can provide standardized mechanisms for widgets, events,
DOM access, server access, AJAX, RE's and other libraries,

in effect, treat each browser as a somewhat irregular machine
and compile optimized code for it specifically

GWT vs Django

focusing on different parts of the overall problem

GWT provides
- reliable, efficient, browser-independent Javascript (from Java)
- extensive widget set
- no help with database access, generating HTML, ...

Django provides
- no Javascript help
- no widgets
- easy database access; template language for generating HTML, ...
- easy linkage from URLs on web page to Python functions

is GWT + App Engine a good combination?

Assessment of Web Frameworks

- advantages

takes care of repetitive parts
more efficient in programmer time

automatically generated code is likely to be more reliable, have more
uniformity of structure

"DRY" (don't repeat yourself) is encouraged

"single point of truth"
information is in only one place so it's easier to change things

- potential negatives

automatically generated code
can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

- systems are large and can be slow

- read Joel Spolsky's "Why I hate frameworks"
http://discuss. joelonsoftware.com/default.asp?joel.3.219431.12

Assessment of Ajax-based systems

potential advantages
- can be much more responsive (cf Google maps)
- can off-load work from server to client
- code on server is not exposed
- continuous update of services
potential negatives
- browsers are not standardized
- Javascript code is exposed to client
- Javascript code can be bulky and slow
- asynchronous code can be tricky
- DOM is very awkward
- browser history not maintained without effort
what next? (changing fast)
- more and better libraries
- better tools and languages for programming
- better standardization?
- will the browser ever replace the OS?

