Python

- high level, expressive, readable

- weakly typed: no declarations for variables
* rich libraries

- escapes to other languages

- good documentation (?)

- language is evolving

- the one scripting language to have if you're only having one?

* Disclaimer: I am NOT a Python expert
* see www.python.org

Python source materials

* Bob Dondero's Python summary from Spring 2011
- http://www.cs.princeton.edu/courses/archive/spring11/cos333/
reading/pythonsummary.pdf
- bwk's Python help file:
- http://../cos333/python.help/
+ Official Python documentation:
- http://docs.python.org/tutorial/
- http://docs.python.org/reference
- http://docs.python.org/library
+ Idiomatic Python:

- http://python.net/~goodger/projects/pycon/2007/idiomatic/
handout.html

* Python challenge:
- http://www.pythonchallenge.com/

7777777 T 7 o T
\“\w AL VA%
_“\ \\ / \\\\

\\H\\\\\ 7

/

I JUST TYPED

[

.. L ALSO SAMPLED

EVERYTHING IN THE

import ofﬁfgmvﬂ:y
{
RBUT I THINK THIS
|S THE PYTHON.

MED'CINE CABINET

FOR COMPARISON.-

THATS 1T?

A

xkcd.com/ 3B

I DUNNO...

5

COME JOIN US!

WHITEGFRCE?

DYNAMIC TYPI

IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD

PROGRAMMING

UP HERE!

BUT HOW ARE
YOU FLYING?

.

i

/

T LEARNED IT LAST

NIGHT! EVERYTHING

1S SO SIMPLE!

o, world!"

/

HELLO WORLD IS JUsT

print "Hell

How to run Python

This works with/without #! line
S python x.py

This works with #1/usr/local/bin/python at front of x.py
$ chmod 700 x.py

$ x.py

This works with/without #! line

S python
>>> import x

Python constructs

- constants, variables, types
- operators and expressions
- statements, control flow

* aggregates

* functions

- libraries

- classes

- modules

- efc.

Constants, variables, operators

- constants
- integers, floats, True/False
— ’‘string’, *“string”, r'..’, r”..”, ‘’'’potentially multi-line
string’ '’
no difference between single and double quotes
r’...’ isaraw string: doesn't interpret \ sequences within
- variables

- hold strings or numbers, as in Awk
ho automatic coercions; interpretation determined by operators and context

- no declarations
- variables are either global or local to a function

* operators
- mostly like C, but no ++, -—, 2:
- relational operators are the same for numbers and strings
- string concatenation uses +
- format with “fmt string” % (list of expresssions)

Statements, control flow

* statements
- assignment, control flow, function call, ...
- scope indicated by [consistent] indentation; no terminator or separator

- control flow

if condition: try:
statements statements
elif condition: except:
statements statements
else:
statements

while condition:
statements
for v in list:
statements
[break, continue to exit early]

Exception example

import string

import sys

def cvt(s):
while len(s) > O:

try:

return string.atof(s)
except:

s = s[:-1]

s = sys.stdin.readline()
while s != '':
print '\t%g’' % cvt(s)

s = sys.stdin.readline()

Lists

list, initialized to empty food = []
- list, initialized with 3 elements:
food = ['beer', 'pizza', "coffee"]
elements accessed as arr[index]
- indices from O to len (arr) -1 inclusive
- add new elements with list.append(value) : food.append('coke')
- slicing: list[start:end] iselements start..end-1
example: echo command:

for i in range(l, len(sys.argv)):
if i < len(sys.argv):
print argv[i], # , at end suppresses newline
else:
print argv[i]

tuples are like lists, but are constants
soda = ('coke', 'pepsi')

soda.append('dr pepper') IS an error

Dictionaries (== associative arrays)

- dictionaries are a separate type from lists
- subscripts are arbitrary strings
- elements initialized with dict = {'pizza':200, 'beer':100}

- accessed as dict[str]
- example: add up values from name-value input

pizza 200
beer 100
pizza 500
coke 50

import sys, string, fileinput
val = {} # empty dictionary
line = sys.stdin.readline ()
while (line '= ""):
(n, v) = line.strip() .split()
if val.has _key(n):

val[n] += string.atof (v) AWK version:
else: { val[$S1l] += $2 }
val[n] = string.atof (v) END {

for (1 in wval)

line = sys.stdin.readline () _ _ :
print i, val[i] }

for i1 in wval:
print "$s\t%g" % (i, val[i])

Functions

def name (arg, arg, arqg):
statements of function

def div(a, b):
'''" computes quotient & remainder. b should be > 0'''
q=a/b
r=a=sbhb
return (q, r) # returns a list

* functions are objects
- can assigh them, pass them to functions, return them from fcns
- parameters are passed call by value
- can have named arguments and default values and arrays of name-value pairs

- variables are local unless declared global

- EXCEPT if you only read a global, it's visible
x =1, y = 2
def foo(): y=3; print x,y
foo ()
13
print y
2

Function arguments

positional arguments
def div(a, b): ..

keyword arguments
def div(num=1, denom=1):
- must follow any positional arguments

variable length argument lists *
def foo(a, b=1, *varlist)

- variable length argument must follow positional and keyword args

additional keyword arguments **
def foo(a, b=1, *varlist, **kwords)
- all extra name=val arguments are put in dictionary kwords

Regular expressions and substitution

* underlying mechanisms like Perl: libraries, not operators, less syntax
re.search(pat, str) find first match
re.match(pat, str) test for anchored match
re.split(pat, str) split into list of matches
re.findall(pat, str) list of all matches
re.sub(pat, repl, str) replace all pat in str by repl
- shorthands in patterns
\d = digit, \D = non-digit
\w = "word" character [a-zA-Z0-9_], \W = non-word character
\s = whitespace, \S = non-whitespace
\b = word boundary, \B = non-boundary
- substrings
- matched parts are saved for later use in \1, \2, ...
s = re.sub(r' (\S+)\s+(\S+)', r'\2 \1', s) flips 1st 2 words of s
+ watch out

- re.match is anchored (match must start at beginning)
- patterns are not matched leftmost longest

Classes and objects

class Stack:
def init (self): # constructor
self.stack = [] # local variable
def push(self, obj):
self.stack.append(obj)
def pop(self):
return self.stack.pop() # list.pop
def len(self):
return len(self.stack)

stk = Stack()
stk.push("foo")

if stk.len() '= 1: print "error"
if stk.pop() '= "foo": print "error"
del stk

+ always have to use self in definitions
- special names like __init _ (constructor)
- information hiding only by convention; not enforced

Modules

- a module is a library, often one class with lots of methods

- core examples:
- sys
argv, stdin, stdout
- string
find, replace, index, ...
- re
match, sub, ...
- 0S
open, close, read, write, getenviron, system, ...
fileinput
awk-like processing of input files
- urllib

manipulating url's

Review: Formatter in AWK

/./ { for (i =1; i <= NF; i++)
addword ($i)
}
/~$/ { printline(); print "" }
END { printline() }

function addword(w) {
if (length(line) + length(w) > 60)
printline ()
line = line space w
space = " "

}

function printline() {
if (length(line) > 0)
print line
line = space = ""

Formatter in Python (version 1)

import sys, string
line=""; space = ""

def main() :
buf = sys.stdin.read()
for word in string.split (buf):
addword (word)
printline ()

def addword (word) :
global line, space
if len(line) + len(word) > 60:
printline ()
line = line + space + word
space = " "

def printline():
global line, space
if len(line) > O:
print line
line = space = ""

main ()

Surprises, gotchas, etc.

- indentation for grouping, ":" always needed
- no implicit conversions
- often have to use class hame (string.atof(s))
- elif, not else if
*no ++, --, ?:
- assignment is not an expression
- no equivalent of while ((c = getchar()) != EOF) ..
+ % for string formatting
 global declaration to modify non-local variables in functions
* no uninitialized variables

if v '= None:
if arr.has key():
* regular expressions not leftmost longest
- re.match is anchored, re.sub replaces all

What makes Python successful?

- comparatively small, simple but rich language
- regular expressions, strings, tuples, assoc arrays
- clean (though limited) object-oriented mechanism
- reflection, etc.

- efficient enough
- seems to be getting better

- large set of libraries
- extensible by calling C or other languages

- embeddings of major libraries
- e.g., TkInter for GUIs

- open source with large and active user community

- standard: there is only one Python
- but watch out for Python 3, which is not backwards compatible

- a reaction to the complexity and irregularity of Perl?

Perl vs. Python

* most tradeoffs in Awk made to keep it small and simple
* most tradeoffs in Perl made to make it powerful and expressive
* most tradeoffs in Python made to make it small and interactive
- domain of applicability

- Perl does system stuff well

- Python is a lot simpler

- Python is more extensible?
- efficiency

- seem close to the same now
- standardization

- there's only one Perl| but it evolves

- there's only one Python but it evolves

- program size, installation, environmental assumptions

- both are big, use a big configuration script, take advantage of the
environment

- Python is somewhat smaller

