COS 424
Homework #1
Due Tuesday, February 23rd

See the course website for important information about collaboration and late policies, as well as where and
when to turn in assignments.

Data files

The questions make use of two data files available from
http://www.cs.princeton.edu/courses/archive/springl10/cos424/w/hwl.

hwl_sample2_train.txt
hwl_sample2_train.txt

Each data file contains n = 50 lines. Each line contains exactly 2 numbers representing the X and Y
coordinates of points generated by adding noise to a secret function. The files hwl_sample2_train.txt and
hwl_sample2_train.txt are only useful for the last question.

For verification, here is a graphical representation of both datasets.

Sample 1 Sample 2
5 70<L
60
4 ° o 50 {o
o
3 06 08 40 q
Q OOO 30
2 qgg 20 g oo
o 10 o
o o) @ Q, (9]
1 0 (0]
o 3 o) & Og%
- o
olo0o o o 10 o 0o o ©
o © -20 O O O
©o & ©
4l 0% -30 o) S
o o
-40t— o
o
-2 -50
-4 -2 0 2 4 -4 -2 0 2 4

Question 1

Implement linear least square curve fitting.

Provide plots showing the points and the fitted curve for both datasets using the following bases.

e Linear regression: ®(z) = (1,x)
e Cubic regression: ®(z) = (1,z, 2%, 23)
e Cubic splines: ®(z) = (1,z,2%, 2%, [z + 23, [z], [z — 2]3)

The notation [z]; is a shorthand for max(0, z).

We need only three main subroutines:

e phi(x) computes returns the vector ®(x) for the chosen basis.

e train(data) computes the weights w for the given training points. Argument data is a matrix
n X 2 containing the training set. The following pseudo-code for the function train relies on a
linear equation solver solve. Adding 107% to the diagonal of xx avoids numerical problems when
the matrix is singular or near-singular.

function train(data)

n := data.nrows()

d := phi(0).nrows()
xx := new matrix(d,d)
Xy := new vector(d)
for i ;=1 ton

phix := phi(datali,0])

XX := xx + phix * transpose(phix)
Xy := xy + phix * datali,1]
endfor

for j :=1 to d
xx[j,j] = xx[j,j] + le-6
endfor
return solve(xx, xy)
endfunction

e test(x, w) returns transpose(w)*phi(x), that is, the value in x of the curve with weights w.

Plots for SAMPLE1

Polynomial d=1 Polynomial d=3 Piecewise cubic with 3 knots

Plots for SAMPLE2

Polynomial d=1 Polynomial d=3

80
60 60
60 o
e 40 40
40 o
20 g © o 20 20
o @ %0 8
0 ool 0 0
%, FLD
_ oo
20 R 8o 20 20
o
-40 S
o -40 -40
-60
-6 -4 -2 0 2 4 6 -6 6 -6 6

Question 2

Like polynomials, cubic splines often display strong variations outside of the domain of the input examples.
Given a set of knots ry < ry < -+ < r, we would like to construct a spline basis that always produces
a piecewise function whose pieces are affine (polynomials of degree 1) when z < r; or z > 7 and cubic
(polynomials of degree 3) when r1 < z < ry.

Cubic splines can be written as

k
f(x) =ap+ ar+ a2x2 + a3333 + Z bi[x - H]i (1)

i=1

a) Write conditions on the parameters a; and b; expressing that the spline function has no cubic term
when x < ri or x > 7.

When x < ry, f(x) = a3z® + az2? + a1x + ao.
When = > ry, f(z) = (a3+Zf:1bi)x3+...mQ—l—...x—i—...
The conditions are therefore a3 = 0 and Zlle ; = 0.

b) Derive a spline basis that embodies these conditions.
Hint: write ¢; = Z;Zl b; and rewrite expression (1) with the ¢; instead of the b;.

The resulting splines should have the form

k—1
f(z) = ap + a1z + aga® + Z cioi () (2)
i=1
Since b; = ¢; — ¢;—1 and az = 0, we can rewrite (1) as:
k
f(@) =ao + a1z + aza® + Z(Cl —cim1) [z — i)}
i=1

Reorganizing the sum and using the conditions ¢, = Ele b; = 0:

k-1
fl@)=ao+az +aa® +) ci(fz —rif} — [= rip]d) (3)
i=1
Therefore the basis is ®(z) = (1, 2,27, ... [z —r]3 — [z —ripq|d...) withi=1... k- 1.

c¢) Write further conditions on the coefficient a; and ¢; expressing that the spline function has no quadratic
term when z < r; or & > 7.

No quadratic terms when x <7 <= a3 =0
Observe (x — a)3 — (x — b)3 = 3(b — a)x? — 3(b? — a®)x + (b> — a®).
Then, when z > 7y, Zf:ll ci(fx = ri]d — [z — ripq]3) = 322 Zi:ll Ci(rign —m) +3x...+ ...

The additional conditions are therefore as = 0 and Zf:_ll ¢i(riv1 —ry) =0.

d) Derive a spline basis that embodies all these conditions, namely that the pieces of the resulting functions
are affine when = < r; or > ri. Such splines are called natural cubic splines.

Same story as question (2b). Define d; = 2321 ¢i(rig1 — 14); recall ag = 0; and write (3) as

k

1
di —d;_
f(.’E) = ap -+ a1 xr + Z 7’,«‘—%1 — Tl, ([.’E — Tz]i — [CC — 7"7;+1EF)
1 %

i=

Reorganizing the sum and using the condition dx_1 = 0,

kf
B S A o Sy AN O Y L A s
f(IE) —(10+CL1£E+ d —
Zi:l ' Tig1— T Tite — Tit1

[Ifr,]3 —[z—r; 1]3 [z—mr; 1]3 —[z—7; 2]3
Thebasisisthend)(x):(1,1‘,... dizlrmrinly | foreali Zleorie *,...)withi:l...k—z

Ti+1 =T Ti+2—Ti+1

natural spline basis (knots=-3,-1,1,3)

This basis is plotted on the left with 4 knots

The non trivial basis functions are composed of four segments
15 (flat, cubic, cubic, linear) with boundaries at the knots.
There are other possible basis for natural splines

[o—ri]% —[z—riga1]} _ [w—rk_1]% —[z—ri]
Tit1—T4 Tk—Tk—1 T

such as: (1,30, e

@

or (1 - [I—T'i]i—[l‘—’(‘k]i . [;L'—T;c,l]i—[w—rk]i)
R — — A
TR—T4 Tk—Tk—1

-5¢

-10

e) Count the number of dimensions and the number of constraints (continuity, continuous first derivatives,
continuous second derivatives) to confirm that the basis dimension should indeed be k.

Each segment of the fitted curve is a cubic polynomial. That would give 4(k + 1) parameters. We have
three constraints per knot stating that the function and its first two derivatives are continuous. Finally
we have four additional constraints stating that the cubic and quadratic coefficients in the end pieces
are zero. Therefore the final dimension is 4(k + 1) — 3k — 4 = k.

Question 3

We now consider natural splines with & evenly spaced knots such that r; = —4 and ry = 4.
Use 5-fold cross-validation to determine the best k for each of the two samples.

Provide one plot for each dataset showing the average of the training and validation MSE obtained during
k-fold cross-validation as a function of k =1...8.

First there is a problem with the question: there are no natural splines with k£ < 2. In fact the case
k = 2 corresponds to a simple linear regression.

A typical code for computing the k-fold validation error contains

e A function split_sample(data,nfolds,i) to compute the i-th split of the data. This function
returns two data matrices containing the training part and the testing part of the split. My

splitting function takes the data in the order of the data file and divides it in five segments of 10
examples. The testing part for the i-th fold is the i-th segment (10 examples). The training part
is obtained by removing the i-th segment from the whole dataset (40 examples are left.)

e A function mse_sample(data,w) to compute the MSE of the curve w on sample data.

function mse_sample(data,w)
err = 0
for i=1 to data.nrows()
err = err + square(datali,1] - test(datali,0], w))
endfor
return err / data.nrows()
endfunction

e A function kfold error(data,nfolds) to perform the k-fold cross-validation.

function kfold_error(data,nfolds)
err = 0
for i=1 to nfolds
trdata,tedata = split_sample(data,nfolds,i)
err = err + mse_sample(tedata, train(trdata))
endfor
return err / nfolds
endfunction

The k-fold errors as a function of k look like the following plots. Depending on the details of the
splitting function, there can be some differences. ..

Samplel Sample2
5-fold mse 5—fold mse
0.7 600
0.6 500
05 400
0.4 300
200
0.3
0.2 100
0 5 10 15 0 5 10 15
number of knots number of knots

Note that the best error for sample 2 is £k = 10 which is greater than the maximal k specified in the
question. Extra points for whoever pointed this out.

The following plots show curve fits for selected solutions.

Samplel: Natural cubic spline with 4 knots Sample 2: Natural cubic spline with 8 knots Sample2: Natural cubic spline with 10 knots

Question 4

Download the two testing sets provided on the homework page and report the testing set MSE achieved by
the models you have selected.

The code for this is trivial when you have programmed the k-fold validation.

The following tables give my results. The 5-fold MSE and the optimal k£ can vary depending on the
details of your splitting function. But the test MSE should be the same because it is obtained by
retraining on the whole dataset with the selected value of k.

Sample 1 Sample 2
k 5-fold MSE test MSE k 5-fold mse test mse
2 0.63 0.73 2 530.53 520.29
3 0.61 0.70 3 557.35 537.47
4 0.23 0.23 4 551.26 516.63
5 0.24 0.24 5 214.57 173.92
6 0.26 0.24 6 183.30 138.38
7 0.27 0.26 7 135.94 120.08
8 0.26 0.27 8 116.75 115.46
9 0.26 0.27 9 111.45 115.16
10 0.25 0.28 10 110.90 116.87
11 0.26 0.30 11 118.76 113.58
12 0.28 0.29 12 162.39 110.68
13 0.34 0.30 13 258.07 110.20
14 0.33 0.32 14 385.17 133.13
15 0.35 0.33 15 332.35 154.03

Note how k-fold cross-validation underestimates the best k& on sample2.
This probably happens because each fold is trained on 40 examples instead of 50.

