
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 9:21:13 AM

Combinatorial Search

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

2

Overview

Exhaustive search.  Iterate through all elements of a search space.

Applicability.  Huge range of problems (include intractable ones).

Caveat.  Search space is typically exponential in size  !
effectiveness may be limited to relatively small instances.

Backtracking.  Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible solutions.

Goal.  Process all 2N bit strings of length N.

• Maintain a[i] where a[i] represents bit i.

• Simple recursive method does the job.

 
Remark.  Equivalent to counting in binary from 0 to 2N - 1.

3

// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}

N = 4

Warmup:  enumerate N-bit strings

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0 
1 1 0 1
1 1 1 0
1 1 1 1

N = 3

a[0] a[N-1]

0 0 0
0 0 1
0 0 0
0 1 0
0 1 1
0 1 0
0 0 0
1 0 0
1 0 1
1 0 0
1 1 0
1 1 1
1 1 0
1 0 0
0 0 0

clean up

public class BinaryCounter
{
   private int N;   // number of bits
   private int[] a; // a[i] = ith bit

   public BinaryCounter(int N)
   {
      this.N = N;
      this.a = new int[N];
      enumerate(0);
   }

   private void process()
   {
      for (int i = 0; i < N; i++)
         StdOut.print(a[i]) + " ";
      StdOut.println();
   }

   private void enumerate(int k)
   {
     if (k == N)  
     {  process(); return;  }
     enumerate(k+1);
     a[k] = 1;
     enumerate(k+1);
     a[k] = 0;
   }  
}

4

Warmup:  enumerate N-bit strings

public static void main(String[] args)
{
   int N = Integer.parseInt(args[0]);
   new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this
lecture are variations

on this theme



5

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

6

N-rooks problem

Q.  How many ways are there to place N rooks on an N-by-N board so that
no rook can attack any other?

Representation.  No two rooks in the same row or column  !  permutation.

Challenge.  Enumerate all N! permutations of 0 to N-1.

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

7

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N.

• Start with permutation a[0] to a[N-1].

• For each value of i:

- swap a[i] into position 0
- enumerate all (N-1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by
perms of 1 2 0

0 followed by
perms of 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

0 1 2
0 2 1
0 1 2
1 0 2
1 2 0
1 0 2
0 1 2
2 1 0
2 0 1
2 1 0
0 1 2

0 1
1 0
0 1

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

cleanup swaps that bring perm back to original

N = 2 N = 3

a[0] a[N-1]

Recursive algorithm to enumerate all N! permutations of size N.

• Start with permutation a[0] to a[N-1].

• For each value of i:

- swap a[i] into position 0
- enumerate all (N-1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
   if (k == N)
   {  process(); return;  }
  
   for (int i = k; i < N; i++)
   {
      exch(k, i);
      enumerate(k+1);
      exch(i, k);
   }
}

Enumerating permutations

8

clean up

% java Rooks 4
0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 2 1 
0 3 1 2 
1 0 2 3 
1 0 3 2 
1 2 0 3 
1 2 3 0 
1 3 2 0 
1 3 0 2 
2 1 0 3 
2 1 3 0 
2 0 1 3 
2 0 3 1 
2 3 0 1 
2 3 1 0 
3 1 2 0 
3 1 0 2 
3 2 1 0 
3 2 0 1 
3 0 2 1 
3 0 1 2  

1 followed by
perms of 0 2 3

0 followed by
perms of 1 2 3

2 followed by
perms of 1 0 3

3 followed by
perms of 1 2 0

a[0] a[N-1]



public class Rooks
{
   private int N;
   private int[] a; // bits (0 or 1)

   public Rooks(int N)
   {
      this.N = N;
      a = new int[N];
      for (int i = 0; i < N; i++)
         a[i] = i;
      enumerate(0);
   }

   private void enumerate(int k)
   { /* see previous slide */  } 

   private void exch(int i, int j)
   {  int t = a[i]; a[i] = a[j]; a[j] = t;  }

   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      new Rooks(N);
   }
}

9

Enumerating permutations

% java Rooks 2
0 1 
1 0 

% java Rooks 3
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 1 0 
2 0 1 

initial
permutation

10

4-rooks search tree

solutions

. . .

Slow way to compute N!.

Hypothesis.  Running time is about 2(N! / 8!) seconds.

% java Rooks 7 | wc -l
5040

% java Rooks 8 | wc -l
40320

% java Rooks 9 | wc -l
362880

% java Rooks 10 | wc -l
3628800

% java Rooks 25 | wc -l
...

N-rooks problem:  back-of-envelope running time estimate

11

instant

1.6 seconds 

15 seconds 

170 seconds

forever

12

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph



Q.  How many ways are there to place N queens on an N-by-N board so that 
no queen can attack any other?

Representation.  No two queens in the same row or column  !  permutation.
Additional constraint.  No diagonal attack is possible.

Challenge.  Enumerate (or even count) the solutions.
13

N-queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

unlike N-rooks problem,
nobody knows answer for N  > 30

14

4-queens search tree

diagonal conflict
on partial solution:

no point going deeper

solutions

15

4-queens search tree (pruned)

solutions

"backtrack" on
diagonal conflicts

16

Backtracking paradigm.  Iterate through elements of search space.

• When there are several possible choices, make one choice and recur.

• If the choice is a dead end, backtrack to previous choice,
and make next available choice.

Benefit.  Identifying dead ends allows us to prune the search tree.

Ex.  [backtracking for N-queens problem]

• Dead end:  a diagonal conflict.

• Pruning:  backtrack and try next column when diagonal conflict found.

N-queens problem:  backtracking solution



  private boolean backtrack(int k)
  {
     for (int i = 0; i < k; i++)
     {
        if ((a[i] - a[k]) == (k - i)) return true;
        if ((a[k] - a[i]) == (k - i)) return true;
     }
     return false;
  }

  // place N-k queens in a[k] to a[N-1]
  private void enumerate(int k)
  {
     if (k == N)
     {  process(); return;  }

     for (int i = k; i < N; i++)
     {
        exch(k, i);
        if (!backtrack(k)) enumerate(k+1);
        exch(i, k);
     }
  }

17

N-queens problem:  backtracking solution

stop enumerating if 
adding queen k leads to 

a diagonal violation

% java Queens 4
1 3 0 2
2 0 3 1

% java Queens 5
0 2 4 1 3 
0 3 1 4 2 
1 3 0 2 4 
1 4 2 0 3 
2 0 3 1 4 
2 4 1 3 0 
3 1 4 2 0 
3 0 2 4 1 
4 1 3 0 2 
4 2 0 3 1 

% java Queens 6
1 3 5 0 2 4 
2 5 1 4 0 3 
3 0 4 1 5 2 
4 2 0 5 3 1 

a[0] a[N-1]

Pruning the search tree leads to enormous time savings.

N-queens problem:  effectiveness of backtracking

18

N Q(N) N !

2 0 2

3 0 6

4 2 24

5 10 120

6 4 720

7 40 5,040

8 92 40,320

9 352 362,880

10 724 3,628,800

11 2,680 39,916,800

12 14,200 479,001,600

13 73,712 6,227,020,800

14 365,596 87,178,291,200

Hypothesis.  Running time is about (N! / 2.5N) / 43,000 seconds.

Conjecture.  Q(N) is ~ N! / cN, where c is about 2.54.

N-queens problem:  How many solutions?

19

% java Queens 13 | wc -l
73712

% java Queens 14 | wc -l
365596

% java Queens 15 | wc -l
2279184

% java Queens 16 | wc -l
14772512

% java Queens 17 | wc -l
...

1.1 seconds

5.4 seconds 

29 seconds

210 seconds

1352 seconds

20

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph



21

Counting:  Java implementation

Goal.  Enumerate all N-digit base-R numbers.
Solution.  Generalize binary counter in lecture warmup.

// enumerate base-R numbers in a[k] to a[N-1]
private static void enumerate(int k)
{ 
   if (k == N)
   {  process(); return;  }

   for (int r = 0; r < R; r++)
   {
      a[k] = r;
      enumerate(k+1);
   }
   a[k] = 0;
}

% java Counter 2 4
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3

% java Counter 3 2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

a[0] a[N-1]

cleanup not needed; why?

22

Goal.  Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

Remark.  Natural generalization is NP-complete.

Counting application:  Sudoku

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

23

Goal.  Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

Solution.  Enumerate all 81-digit base-9 numbers (with backtracking).

Counting application:  Sudoku

using digits 1 to 9

7 2 8 9 4 6 3 1 5

9 3 4 2 5 1 6 7 8

5 1 6 7 3 8 2 4 9

1 4 7 5 9 3 8 2 6

3 6 9 4 8 2 1 5 7

8 5 2 1 6 7 4 9 3

2 9 3 6 1 5 7 8 4

4 8 1 3 7 9 5 6 2

6 7 5 8 2 4 9 3 1

7 8 3 ...
0 1 2 3 4 5 6 7 8 80

a[]

24

Iterate through elements of search space.

• For each empty cell, there are 9 possible choices.

• Make one choice and recur.

• If you find a conflict in row, column, or box, then backtrack.

Sudoku:  backtracking solution

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

backtrack on 3, 4, 5, 7, 8, 9



private void enumerate(int k)
{ 

   if (k == 81)
   {  process(); return;  }

   if (a[k] != 0)
   {  enumerate(k+1); return;  }

   for (int r = 1; r <= 9; r++)
   {
        a[k] = r;
        if (!backtrack(k))
           enumerate(k+1);
   }

   a[k] = 0;
}

25

Sudoku:  Java implementation

clean up

unless it violates a
Sudoku constraint
(see booksite for code)

% more board.txt
7 0 8 0 0 0 3 0 0
0 0 0 2 0 1 0 0 0
5 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 2 6
3 0 0 0 8 0 0 0 0
0 0 0 1 0 0 0 9 0
0 9 0 6 0 0 0 0 4
0 0 0 0 7 0 5 0 0
0 0 0 0 0 0 0 0 0

% java Sudoku < board.txt
7 2 8 9 4 6 3 1 5
9 3 4 2 5 1 6 7 8
5 1 6 7 3 8 2 4 9
1 4 7 5 9 3 8 2 6
3 6 9 4 8 2 1 5 7
8 5 2 1 6 7 4 9 3
2 9 3 6 1 5 7 8 4
4 8 1 3 7 9 5 6 2
6 7 5 8 2 4 9 3 1

try 9 possible digits
for cell k

cell k initially filled in;
recur on next cell

found a solution

26

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

Given N items, enumerate all 2N subsets.

• Count in binary from 0 to 2N - 1.

• Bit i represents item i.

• If 0, in subset; if 1, not in subset.

27

Enumerating subsets:  natural binary encoding

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

empty
1
2

2 1
3

3 1
3 2

3 2 1
4

4 1
4 2

4 2 1
4 3

4 3 1
4 3 2

 4 3 2 1

4 3 2 1
4 3 2
4 3 1
4 3

4 2 1
4 2
4 1
4

3 2 1
3 2
3 1
3

2 1
2
1

empty

i binary subset complement

28

Enumerating subsets:  natural binary encoding

Given N items, enumerate all 2N subsets.

• Count in binary from 0 to 2N - 1.

• Maintain a[i] where a[i] represents item i.

• If 0, a[i] in subset; if 1, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[n] = 0;
}



29

Digression: Samuel Beckett play

Quad.  Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

ruler function
30

Digression: Samuel Beckett play

Quad.  Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go 

through prescribed movements, fear non-being even though their lives are 

meaningless, and then they disappear or die.”  — Sidney Homan

31

Binary reflected gray code

Def.  The k-bit binary reflected Gray code is:

• the (k-1) bit code with a 0 prepended to each word, followed by

• the (k-1) bit code in reverse order, with a 1 prepended to each word.

a[0] a[N-1]

32

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

• Flip a[k] instead of setting it to 1.

• Eliminate cleanup.

Advantage.  Only one item in subset changes at a time.

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1 - a[k];
  enumerate(k+1);
}

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}

standard binary counter (from warmup)Gray code binary counter

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

same values
since no cleanup

a[0] a[N-1]



33

More applications of Gray codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

Towers of Hanoi

Scheduling (set partitioning).  Given n jobs of varying length, divide among 
two machines to minimize the makespan (time the last job finishes).

Remark.  This scheduling problem is NP-complete.

34

Scheduling

or, equivalently, difference
between finish times

cost

0

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

job length

0 1.41

1 1.73

2 2.00

3 2.23

.09

35

Scheduling (full implementation)

% java Scheduler 4 < jobs.txt

a[] finish times cost

trace of
public class Scheduler
{
   private int N;          // Number of jobs.
   private int[] a;        // Subset assignments.
   private int[] b;        // Best assignment.
   private double[] jobs;  // Job lengths.

   public Scheduler(double[] jobs)
   {
      this.N = jobs.length;
      this.jobs = jobs;
      a = new int[N];
      b = new int[N];
      enumerate(N);
   }

   public int[] best()
   {  return b;  }

   private void enumerate(int k)
   {  /* Gray code enumeration. */   }  

   private void process()
   {  
     if (cost(a) < cost(b))
       for (int i = 0; i < N; i++)
         b[i] = a[i];
   }

   public static void main(String[] args)
   {  /* create Scheduler, print results */  }
}

0  0  0  0    7.38   0.00   7.38
0  0  0  1    5.15   2.24   2.91
0  0  1  1    3.15   4.24   1.09
0  0  1  0    5.38   2.00 
0  1  1  0    3.65   3.73   0.08
0  1  1  1    1.41   5.97 
0  1  0  1    3.41   3.97 
0  1  0  0    5.65   1.73 
1  1  0  0    4.24   3.15 
1  1  0  1    2.00   5.38 
1  1  1  1    0.00   7.38 
1  1  1  0    2.24   5.15 
1  0  1  0    3.97   3.41 
1  0  1  1    1.73   5.65 
1  0  0  1    3.73   3.65 
1  0  0  0    5.97   1.41 

   MACHINE 0     MACHINE 1
  1.4142135624
                1.7320508076
                2.0000000000
  2.2360679775
-----------------------------
  3.6502815399  3.7320508076

Observation.  Large number of subsets
leads to remarkably low cost.

Scheduling (larger example)

36

cost < 10 -8

% java Scheduler < jobs.txt
   MACHINE 0      MACHINE 1
  1.4142135624
  1.7320508076
                2.0000000000
  2.2360679775
  2.4494897428
                2.6457513111
                2.8284271247
                3.0000000000
  3.1622776602
                3.3166247904
                3.4641016151
                3.6055512755
                3.7416573868
  3.8729833462
                4.0000000000
  4.1231056256
                4.2426406871
  4.3588989435
                4.4721359550
  4.5825756950
  4.6904157598
  4.7958315233
  4.8989794856
                5.0000000000
------------------------------
 42.3168901295 42.3168901457



Scheduling:  improvements

Many opportunities (details omitted).

• Fix last job to be on machine 0 (quick factor-of-two improvement).

• Maintain difference in finish times (instead of recomputing from scratch).

• Backtrack when partial schedule cannot beat best known.
(check total against goal:  half of total job times)

• Process all 2k subsets of last k jobs, keep results in memory,
(reduces time to 2N-k when 2k memory available). 

37

private void enumerate(int k)
{
  if (k == N-1)
  {  process(); return;  }
  if (backtrack(k)) return;
  enumerate(k+1);
  a[k] = 1 - a[k];
  enumerate(k+1);
}

38

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

39

Enumerating all paths on a grid

Goal.  Enumerate all simple paths on a grid of adjacent sites.

Application.  Self-avoiding lattice walk to model polymer chains.

no two atoms can occupy
same position at same time

40

Enumerating all paths on a grid:  Boggle

Boggle.  Find all words that can be formed by tracing a simple path of 
adjacent cubes (left, right, up, down, diagonal).

Pruning.  Stop as soon as no word in dictionary contains string of letters on 
current path as a prefix  ⇒  use a trie. B

BA
BAX

B A X X X

X C A C K

X K R X X

X T X X X

X X X X X



41

Boggle:  Java implementation

private void dfs(String prefix, int i, int j)
{
   if ((i < 0 || i >= N) ||
       (j < 0 || j >= N) ||
       (visited[i][j])   ||
       !dictionary.containsAsPrefix(prefix))
      return;

   visited[i][j] = true;
   prefix = prefix + board[i][j];

   if (dictionary.contains(prefix))
      found.add(prefix);

   for (int ii = -1; ii <= 1; ii++)
      for (int jj = -1; jj <= 1; jj++)
         dfs(prefix, i + ii, j + jj); 

   visited[i][j] = false;
}

backtrack

add current character

add to set of found words

try all possibilities

clean up

string of letters on current path to (i, j)
Goal.  Find a simple path that visits every vertex exactly once.

Remark.  Euler path easy, but Hamilton path is NP-complete.
42

Hamilton path

visit every edge exactly once

43

Knight's tour

Goal.   Find a sequence of moves for a knight so that (starting from any 
desired square) it visits every square on a chessboard exactly once.

Solution.   Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

44

Hamilton path:  backtracking solution

Backtracking solution.  To find Hamilton path starting at v:

• Add v to current path.

• For each vertex w adjacent to v

- find a simple path starting at w using all remaining vertices

• Clean up:  remove v from current path.

Q.  How to implement?
A.  Add cleanup to DFS (!!)



45

Hamilton path:  Java implementation

public class HamiltonPath
{
   private boolean[] marked;    // vertices on current path
   private int count = 0;       // number of Hamiltonian paths

   public HamiltonPath(Graph G)
   {
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         dfs(G, v, 1);
   }

   private void dfs(Graph G, int v, int depth)
   {
      marked[v] = true;
      if (depth == G.V()) count++;
      

      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w, depth+1);

      marked[v] = false;
  }
}

clean up

length of current path
(depth of recursion)found one

backtrack if w is
already part of path

Exhaustive search:  summary

46

problem enumeration backtracking

N-rooks permutations no

N-queens permutations yes

Sudoku base-9 numbers yes

scheduling subsets yes

Boggle paths in a grid yes

Hamilton path paths in a graph yes

47

The longest path

Woh-oh-oh-oh, find the longest path!

Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,

There would still be papers left to write,

I have a weakness,

I'm addicted to completeness,

And I keep searching for the longest path.

The algorithm I would like to see

Is of polynomial degree,

But it's elusive:

Nobody has found conclusive

Evidence that we can find a longest path.

I have been hard working for so long.

I swear it's right, and he marks it wrong.

Some how I'll feel sorry when it's done:  GPA 2.1

Is more than I hope for.

Garey, Johnson, Karp and other men (and women)

Tried to make it order N log N.

Am I a mad fool

If I spend my life in grad school,

Forever following the longest path?

Woh-oh-oh-oh, find the longest path!

Woh-oh-oh-oh, find the longest path!

Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988

while a student at Johns Hopkins

during a difficult algorithms final 

That’s all, folks: Keep searching!

48

The world’s longest path (Chile): 8500 km


