° Review: summary of the performance of symbol-table implementations
5.2 Tries yermer Y P

Frequency of operations.

@ performance
EL‘I&F;;:MS,,,,) _ typical case)
stringnumber implementation ordered operations
. operations on keys
search insert delete

sunsas

mplementanon

§5trle

o
xauxed

v red-black BST 1.001g N 1.001gN 1.001gN yes compareTo ()
random =@ =g
H . equals ()
A A4 » tries hashing 1t 1t 1t no hasheode ()
ot 22 z
el (0 S » TSTs
section “5'“9 H] A 1 under uniform hashing assumption
H 4 9 p
bit s & applications
= o length
Ei :—‘I link ';,‘53
Bl ie
E H
index
Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.
Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne Copyright © 2009 - January 26, 2010 8:19:33 AM

String symbol table basic APT String symbol table implementations cost summary

String symbol table. Symbol table specialized to string keys.

seart S ace
mptementatien - s) o sereRs

public class StringST<Value> string symbol table type
StringST() create an empty symbol table red-black BST L+clg N clg N clg N 14 97.4
void put(String key, Value val) put key-value pair into the symbol table hashing L L L 4N to16 N 0.76 40.6
Value get(String key) return value paired with given key
boolean contains(String key) is there a value paired with the given key?

* N = number of strings
* L = length of string
* R = radix

actors. txt 82 MB 114 M 900 K

moby . txt 1.2 MB 210K 32K

Goal. As fast as hashing, more flexible than binary search trees.

Challenge. Efficient performance for string keys.

Tries
Tries. [from retrieval, but pronounced "try"]

* Store characters and values in nodes (not keys).
* Each node has R children, one for each possible character.

EX. she sells sea shells by the

root

link to trie for all keys
that start with s

» tries link to trie for all keys
that start with she
value for she in node
corresponding to
last key character

key value

by 4
sea 2
\abel cach node with sells 1
dnaracter associnted —= ()3 she 0
with incoming link shells 3
the 5
Anatomy of a trie
5
Search in a trie Search in a trie
Follow links corresponding to each character in the key. Follow links corresponding to each character in the key.
e Search hit: node where search ends has a nhon-null value. e Search hit: node where search ends has a non-null value.
¢ Search miss: reach a null link or node where search ends has null value. e Search miss: reach a null link or node where search ends has null value.
get("shells™ get("she") get("shell™ get("shore")
@ & ®
® ® ®
® © ©
link for the o,
© @ et
@® _ @®
San'Ch ?‘Hﬂ}/ terminate
at an internal node
3 t I nod /
return the value in the
. node corresponding to no value in the node
return the value in the the last key character (0) corresponding to the last key
node f”"“f””d""g o character, so return nul1l
the last key character (3)

Insertion into a trie

Follow links corresponding to each character in the key.
 Encounter a null link: create new node.

* Encounter the last character of the key: set value in that node.

put("sea”, 7 put("shore", 8)

O
O

©

node corresponding to
the last key character
exists, so set its value @7

nodes wrrcs{anding to
characters at nd of the
key do not exist, so create them
and set the value of the last one

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{ .) use Object instead of Value since
private Object value; no generic array creation in Java
private Node[] next = new Node[R];

}

characters are implicitly
defined by link index

\ each node has
an array of links
and a value

Trie representation

Trie construction example

key value key value key value
root
she 0 o~ shells 3 O sea 6 @)
® valueisinpode O O}
di
s i
® /z,’»f ’ O] O]
of ® @s
D e coresponding o
nodes corresponding to the last key character
. L‘}n})nu‘lms W he end u[lﬁc ©) cxists, so reset its value
ey do not exist, so creae the
sells 1 O ardselthe v of the st e~~~ (3
©) shore 7 O
& by 4 @)
) ©
e O oF ©
OF ®
@7
sea 2
the 5 Q
®©
key issequence ®
of characters from
oot 1o value OF
10
Trie representation: Java implementation
Node. A value, plus references to R nhodes.
private static class Node
{) b4 1 use Object instead of Value since
privatefobjectivalue; no generic array creation in Java
private Node[] next = new Node[R];
}

characters are implicitly
defined by link index

2 [0

each node has
an array of links
Pfatannunnnnasannnanannnnunn) and a value

Trie representation (R = 26)

R-way trie: Java implementation

public class TrieST<Value>

{
private static final int R = 256; <«—— extended ASCIT
private Node root;

private static class Node
{ /* see previous slide */ '}

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)
{
if (x == null) x = new Node() ;
if (d == key.length()) { x.val = val; return x; }
char ¢ = key.charAt(d);
x.next[c] = put(x.next[c], key, val, d+l);
return x;

Trie performance

Search miss.

* Could have mismatch on first character.

* Typical case: examine only a few characters.

Search hit. Need to examine all L characters for equality.
Space. R null links at each leaf.

(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit, sublinear-time search miss, wasted space.

R-way trie: Java implementation (continued)

public boolean contains(String key)
{ return get(key) !'= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;
return (Value) x.val;

private Node get(Node x, String key, int d)
{

if (x == null) return null;

if (d == key.length()) return x;

char ¢ = key.charAt(d);

return get(x.next[c], key, d+l);

String symbol table implementations cost summary

character accesses (typical case)

. . search search . space
implementation . : insert P moby . txt
hit miss ((1S)

actors. txt

red-black BST L+clg®?N clg?N clg?N 4N 1.40 97.4
hashing L L L 4Nto16 N 0.76 40.6
R-way trie L logr N L (R+1)N 112 out of memory
R-way frie.

* Method of choice for small R.
* Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

Digression: out of memory? Digression: out of memory?

A short (approximate) history.
“ 640 K ought to be enough for anybody. ”

— attributed to Bill Gates, 1981) address addressable typical actual
. . machine year bit. cost
(commenting on the amount of RAM in personal computers) (i Lty memory
12 6 KB 6 KB

PDP-8 1960s $16K
PDP-10 1970s 18 256 KB 256 KB $1M
“ 64 MB of RAM may limit performance of some Windows XP
. . IBM S/360 1970s 24 4 MB 512 KB $IM
features; therefore, 128 MB or higher is recommended for
best performance.” — Windows XP manual, 2002 VAX 1980s 32 46B 1MB $1M
Pentium 1990s 32 468 168 $1K
. . . Xeon 2000s 64 enough 4 6B $100
“ 64 bit is coming to desktops, there is no doubt about that.
But apart from Photoshop, I can't think of desktop applications ? future 128+ enough enough $1

where you would need more than 4GB of physical memory, which
is what you have to have in order to benefit from this technology.
Right now, it is costly. ” — Bill Gates, 2003

“ 512-bit words ought to be enough for anybody. ”
— RS, 1995

A modest proposal

Number of atoms in the universe (estimated). < 2266,
Age of universe (estimated). 14 billion years ~ 2%° seconds = 28 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

266 bits '\ 89 bits ' 157 bits

atom time cushion for whatever

Ex. Use 256-way trie to map atom to location.
* Represent atom as 64 8-bit chars (512 bits).
» 256-way trie wastes 255/256 actual memory.
* Need better use of memory.

Ternary search tries

TST. [Bentley-Sedgewick, 1997]
* Store characters and values in nodes (not keys).

* Each node has three children: smaller (left), equal (middle), larger (right).

Search ina TST

Follow links corresponding to each character in the key.
o If less, take left link; if greater, take right link.

* If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,
move to next char

mismatch: take left or right link,
do not move to next char

return value
associated with
last key character

21

23

Ternary search tries

TST. [Bentley-Sedgewick, 1997]
* Store characters and values in nodes (not keys).

* Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys [i 1o TST for all keys

that start with that start with s
aletter before s

each node has

three links \

TST representation of a trie

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

®
® ©)

cullii RNy < G gl Pc

_a o e G e @ o @

S PR AR T KR R RER ® X
O © PN DO aiE OGO o 4
OB G- @ P @) ® ¢

GREORO Q)
)

TST (155 null links)

now
for
tip
ilk

tag
ot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
Joy
rap
gig
wee
was
cab
wad

cue
fee
tap
ago
tar
jam
dug
and

TST representation in Java

A TST node is five fields:

¢ A value.

¢ A character c.

¢ A reference to aleft TST.

¢ A reference to a middle TST.
* A reference fo a right TST.

standard array of links (R = 26)

/ that start withs ———___ [

private class Node
{
private Value val;
private char c;
private Node left, mid, right;

ternary search tree (TST)

link for keys

j ; :\ link for keys —

Trie node representations

e~

that start with su

TST: Java implementation (continued)

public boolean contains (String key)

{ return get(key) '= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;
return x.val;

}

private Node get(Node x, String key, int d)

{

if (x == null) return null;
char ¢ = s.charAt(d);
if (c < x.¢c)

else if (c > x.c)
else if (d < key.length() - 1)
else

return get(x.left, key, d);
return get(x.right, key, d);
return get(x.mid, key, d+1);

return x;

25

27

TST: Java implementation

public class TST<Value>
{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)
{

char ¢ = s.charAt(d);

if (x == null) { x = new Node(); x.c = ¢c; }

if (c < x.¢) x.left = put(x.left, key, val, d);
else if (¢ > x.c) x.right = put(x.right, key, val, d);
else if (d < s.length() - 1) x.mid = put(x.mid, key, val, d+l);
else x.val = val;

return x;

String symbol table implementation cost summary

character accesses (typical case) dedup

search space
implementation insert P moby . txt
miss (links)

actors. txt

red-black BST L+clg?N clg?N clg?N 97.4
hashing L L L 4Ntol16 N 0.76 40.6
R-way trie L logr N L R+1)N 112 out of memory

TST L+InN InN L+InN 4N 0.72 387

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

TST with R? branching at root

Hybrid of R-way trie and TST.
Do R2-way branching at root.
« Each of R? root hodes points to a TST.

array of 262 roots

cee
TST TST TST TST TST

Q. What about one- and two-letter words?

29

TST vs. hashing

Hashing.

* Need to examine entire key.

* Search hits and misses cost about the same.
* Need good hash function for every key type.
* No help for ordered symbol table operations.

TSTs.

* Works only for strings (or digital keys).

¢ Only examines just enough key characters.

* Search miss may only involve a few characters.

* Can handle ordered symbol table operations (plus others!).

Bottom line. TSTs are:

* Faster than hashing (especially for search misses).
More flexible than red-black trees (next).

31

String symbol table implementation cost summary

character accesses (typical case)

. search search . space
implementation N) insert p moby . txt actors. txt
hit miss (IS

red-black BST L+clg®?N clg?N clg?N 4N 1.40 97.4
hashing L L L 4Nto 16 N 0.76 40.6
R-way trie L logr N L R+1)N 112 out of memory
TST L+InN InN L+InN 4N 0.72 38.7
TST with R? L+InN InN L+InN 4N +R? 0.51 327

» string symbol table API

String symbol table APT

Character-based operations. The string symbol table API supports several

useful character-based operations.

by sea sells she shells shore the

Prefix match. The keys with prefix "sh" are "she", "shells", and "shore".

Longest prefix. The key that is the longest prefix of "shellsort" is "shells".

Wildcard match. The key that match ".ne" are "she" and "the".

Deletion in an R-way trie

To delete a key-value pair:

* Find the node corresponding fo key and set value to null.
¢ If that node has all null links, remove that node (and recur).

delete("shells");

O
©

set value
/ to null O

3

\nun value and links,

S0 remove HQdU
(return null link)

@

©e
non-null value non-null link
50 do not remove node so do not remove node
(return link to node) (return link to node)

Deleting a key (and its associated value) from a trie

String symbol table

APT

public class StringST<Value>

StringSTO

StringST(Alphabet alpha)

void put(String key, Value val)

Value get(String key)

void

booTlean

boolean

String
Iterable<String>

Iterable<String>
int

Iterable<String>

delete(String key)
contains(String key)
isEmpty O
TlongestPrefix0f(String s)
keysWithPrefix(String s)

keysThatMatch(String s)

sizeQ)
keysO

create a symbol table with string keys
create a symbol table with string keys
whose characters are taken from alpha.

put key-value pair into the symbol table
(remove key from table if value is nu11)

value paired with key
(nu11 if key is absent)

remove key (and its value) from table

is there a value paired with key?

is the table empty?

return the longest key that is a prefix of s
all the keys having s as a prefix.

all the keys that match s (where .
matches any character).

number of key-value pairs in the table

all the keys in the symbol table

API for a symbol table with string keys

Remark. Can also add other ordered ST methods, e.g., £1ooz () and rank ().

33

Ordered iteration

To iterate through all keys in sorted order:

* Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

keysWithPrefix("");

key

b

by

s

se
sea
sel
sell
sells
sh
she
shell
shells
sho
shor
shore
t

th
the

q

by

shells

shore

the

Collecting the keys in a trie (trace)

35

Ordered iteration: Java implementation

To iterate through all keys in sorted order:

* Do inorder traversal of trie; add keys encountered to a queue.

* Maintain sequence of characters on path from root to node.

public Iterable<String> keys ()

{

Queue<String> queue = new Queue<String>();
collect(root, "", queue);
return queue;

private void collect(Node x, String prefix, Queue<String> q)

{

if (x == null) return;

if (x.val '= null) q.enqueue (prefix);

for (char ¢ = 0; ¢ < R; c++)
collect(x.next[c], prefix + c, q);

sequence of characters
on path from root to x

/

37

Prefix matches

Find all keys in symbol table starting with a given prefix.

keysWithPrefix("sh");

find subtrie for all /

keys beginning with "'sh"

key q
sh
she she
shel
shell
shells shells
sho
shor
shore shore

collect keys
in that subtrie

Prefix match in a trie

public Iterable<String> keysWithPrefix (String prefix)

{

Queue<String> queue = new Queue<String>() ;
Node x = get(root, prefix, 0);
collect (x, prefix, queue);

return queue; root of subtrie for all strings

beginning with given prefix

39

Prefix matches
Find all keys in symbol table starting with a given prefix.
Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

* User types characters one at a time.
» System reports all matching strings.

4 et \ Gog)gle why is my comgl
Y why is my computer so slow
na Webb why is my computer slow
why is my computer so slow all of a sudden
why is my computer so loud
why is my computer running so slowly
why is my computer screen so big

a|wle|r|T|¥|u|I|o|P why is my computer freezing

nooEEDBGE why is my computer beeping
why is my computer slowing down
oz x|c|v]s|n|m why is my computer so slow lately
apace Google Search | | I'm Feeling Lucky
_
/
L=

Longest prefix
Find longest key in symbol table that is a prefix of query string.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

"ii: 1120 r‘epresem.ed as 32-bit binary number
. for IPv4 (instead of string)

"128.112.055"

"128.112.055.15"

"128.112.136"

"128.112.155.11"
"128.112.155.13"

"128.222"

"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

Q. Why isn't longest prefix match the same as floor or ceiling?

40

Longest prefix

Find longest key in symbol table that is a prefix of query string.
 Search for query string.
* Keep track of longest key encountered.

"she" . ”sheTI" "shellsort"
O
)
® ® 2
©o @0 sarchends ot B
\ o valu 51114/7 e
B R return she
search ends at (last key on path) @
end o string Q) stkeyon s
" ll'f’t/ li:'!’l“;’h”e“ o
®

Possibilities for TongestPrefix0f()

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

* Search for query string.

* Keep track of longest key encountered.

public String longestPrefixOf (String query)

{

{

if (x == null) return length;
if (x.val !'= null) length = d;

int length = search(root, query, 0, 0);
return query.substring(0, length);

private int search(Node x, String query, int d, int length)

search ends at if (d == query.length()) return length;

null link

return shells char ¢ = query.charAt(d) ;

(last key on path)

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired

letter appears.

T9 text input. ["A much faster and more fun way to enter text."]
* Find all words that correspond to given sequence of numbers.
* Press O to see all completion options.

Ex. hello h O W Somehow, it is missing the letter s.
« Multi-tap: 4433555555666 e
T 43556 T | 2ebe | 3eef

return search(x.next[c], query,

d+1l, length);

41

A Letter to t9.com

To: info@t9support.com

Dear T9 texting folks,

I enjoyed learning about the T9 text system

from your webpage, and used it as an example
in my data structures and algorithms class.

However, one of my students noticed a bug

in your phone keypad

http://www.t9.com/images/how.gif

(4eni] 5 ikt 6mnv;

Zoar| | 8t way;

Regards,

Kevin

www.t9.com

Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

(4]

Just wanted to bring this information to
your attention and thank you for your website.

43

42

st orgssonn st prgsrce it prgssos

1 2abc | 3def
(4an] (534 {mnd
Zoar |8ty 9&?

e

where's the "s" 22

44

A world without "s" 2?2

To: "'Kevin Wayne'" <wayne@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder

OEM Dev upport

AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONSIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATIONS

45

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
* Collapse one-way branches in binary trie.
* Thread trie to eliminate multiple node types.

Applications.
* Database search.

* P2P network search.

 IP routing tables: find longest prefix match.

* Compressed quad-tree for N-body simulation.
 Efficiently storing and querying XML documents.

Implementation. One step beyond this lecture.

47

Compressing a frie

Collapsing 1-way branches at bottom.
Internal node stores character; leaf node stores suffix (or full key).

Collapsing interior 1-way branches. putCshe1s", 1);
put(“shellfish", 2);
Node stores a sequence of characters. standard o one-way
trie branching
Q
® &)1 (fish):
®
® internal
Branching
@ g
m
®: ®
6 1;.\ rfi’ rmlr
— branching
®
OH
Removing one-way branching in a trie

46

Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

mississippi

ISS1pPPI1S
56 789101112

Applications.
* Linear-time longest repeated substring.
 Computational biology databases (BLAST, FASTA).

Implementation. One step beyond this lecture.

48

String symbol tables summary
A success story in algorithm design and analysis.

Red-black tree.
* Performance guarantee: log N key compares.
 Supports ordered symbol table APT.

Hash tables.
* Performance guarantee: constant number of probes.
* Requires good hash function for key type.

Tries. R-way, TST.
* Performance guarantee: log N characters accessed.

* Supports extensions to API based on partial keys.

Bottom line. You can get at anything by examining 50-100 bits (Ill)

49

