4.2 Directed Graphs

wig . EX
PathDAGs
strong

°
us example 3.
connected topologncal%?é
[o

®
poyisw

digraph, . .
Dlgri"‘aé’bhus .é_%én% » digraph API
secédge I8¢ » digraph search

“directed ~ - 3DFS » transitive closure

» topological sort
» strong components

o
Q
=
Q)
e}
3
(7]
8
e

<
o
-
—-r
(]
X
aindwo)

References: Algorithms in Java, 3rd edition, Chapter 19

Algorithms in Java, 4" Edition

Robert Sedgewick and Kevin Wayne Copyright © 2009 March 23, 2010 9:28:26 PM

Link structure of political blogs

Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,

and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]

Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.

“ R
! : I N
= g g 2
Vesty s 3
1 il Vestry sp
aight s¢ = it
i Laightst
§ 4 , /= Laighisi— KD
/| S 2 7 >
B = I 2 3 ¢ ~
- = Hut s > &
g ibert Sy g H &“ﬁ
£ e f N /2
5l ! 14 & 2
Beach sy 1 4 &
f 7 el
= 3
oy
[t S fal
575 &1 ‘ %s, Y%, %"’a Vi
- 2
3
' 5 Noors 57 > 7 <"""'-,,,:
g) IR A S Lol
— - k] ol & 2 SOSA
2 mps £ Gk) s ;
g Fnias— (& NN és oy
= & N RS
s s I : ¢
i t (e S
= Yoy 4/ S W[R
4 3 4 5 AN ~
2 (7
3 u,
= i ® ©2008 Google - Map data 62008 Sanboin, NAVTEQ™ - Terms of Uso' |
Web graph

Vertex = web page.
Edge = hyperlink.

Ecological food web graph

Vertex = species.

Edge: from producer to consumer.

northern copperbelly
water snake

cattails

algae (magnified)

Digraph applications

graph
transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

vertex
street intersection
web page
Species
synset
task
stock, currency
person
person
board position
Jjournal article
object
class

code block

edge
one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

WordNet graph

Vertex = synset.
Edge = hypernym relationship.

event

happening occurrence occurrent natural_event
miracle

acthuman_action human_activity

change alteration modification miracle
group_action
damage harmimpairment transition increase forfeitforfeiture.sacrifice action
resistance opposition transgression
runladderravel leapjumpsaltation jump leap
change
demotion variation
motion movement move
locomotion travel descent
runrunning jump parachuting
dash sprint

Some digraph problems

Path. Is there a directed path from s to 1?
Shortest path. What is the shortest directed path from s and 1?

Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v to w?

Topological sort. Can you draw the digraph so that all edges point

from left to right?

Precedence scheduling. Given a set of tasks with precedence constraints,

how can we best complete them all?

PageRank. What is the importance of a web page?

Set of edges representation

Store a list of the edges (linked list or array).

®

[o

()
O—0G

O]

O YW WVWwdoU U O OO O

[
[

. int E()
» digraph API
Digraph reverse()

0B B W Wwo N K

B R e e
NN O

Digraph APT

public class Digraph digraph data type

create an empty digraph

Di h (i v
igraph (int V) with V vertices

create a digraph from input

Digraph(In in) stream

void addEdge (int v, int w) add an edge from v to w

return an iterator over the

Iterable<Integer> adj(int v) neighbors of v
g S

int V() return number of vertices
return number of edges

return reverse of this
digraph (all edges reversed)

In in = new In();
Digraph G = new Digraph(in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
/* process edge v—w */

Adjacency-matrix representation

Maintain a two-dimensional v-by-v boolean array;
for each edge v — w in the digraph: adj[v][w] = true.

To
0 1 2 3 4 5 6
from o 0 1 1 0 0 1 1
10 0 0 0 0 0 0
@ @ 2 0 0 0 0 0 0 O
3 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0
@ <> s 0 0 0 1 0 o0
s 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0
o s 0 0 0 0 0 0 0
0w 0 0 0 0 0 0 0
1 0 0 [0 [) 0
0o 0o 0 0 0 0 o0

O—0® O—E -

Note: parallel edges disallowed

© ©o 000 o0o0o0o0o0o0o0 o -

% more tinyDG.txt

13
0

HFOWVWWVJ U s OO O

-

©O 00 o0ookroOoOOoOooo o«

13

© 0000 O0o0oo oo o o e

© o okrHrooooooooo

© oo kHoOOooooooo o

©oHoHoOooooooooo

Adjacency-list representation

Maintain vertex-indexed array of lists (use Bag abstraction).

0:‘5 2 1 6 o

®

same as undirected graph,

3 / but one entry for each edge

O
8:
©3 ‘10 —— 11 e—— 12 o

(D—(2)

©)
é@

Digraph representations

In practice. Use adjacency-list representation.
* Algorithms all based on iterating over edges incident to v.
* Real-world digraphs tend to be sparse.

huge number of vertices,
small average vertex degree

representation space }pggtvetdogfv e?/gteo f‘::’?m iteralieasi\:"egr 5;19&5
list of edges E 1% E E
adjacency matrix V2 1 1 Vv
adjacency list E+V 1* outdegree(v) outdegree(v)
adjacency set E+V log (outdegree(v)) log (outdegree(v)) outdegree(v)

*only if parallel edges allowed

Adjacency-lists representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{
private final int V; . .
<«—F— adjacency lists
private final Bag<Integer>[] adj;
public Digraph (int V)
{ <L createempty graph with
this.V = V; V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge (int v, int w) dd edae f N
. <—+— add edge from v tow
{ adj[v].add(w); }
public Iterable<Integer> adj(int v)
{ return adj[vl; } <«<—f— iterator for v's neighbors
}

» digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search (single-source reachability)

Identical to undirected version (substitute pigraph for Graph).

public class DFSearcher

{

private boolean[] marked;

public DFSearcher (Digraph G, int s)

{

}

private void dfs(Digraph G, int v)

{

}

marked = new boolean[G.V()];
dfs (G, s);

marked[v] = true;
for (int w : G.adj(v))
if ('marked([w]) dfs(G, w);

public boolean visited(int v)

{

return marked[v]; }

true if connected to s

constructor marks vertices
connected to s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

Depth-first search in digraphs
Same method as for undirected graphs.
Every undirected graph is a digraph.

* Happens to have edges in both directions.
* DFS is a digraph algorithm.

DFS (to visit a vertex s)

Mark s as visited.
Recursively visit all unmarked
vertices w adjacent to s.

DAY

O T -

Depth-first-search (pathfinding) for undirected graphs [from Lecture 12]

public class PathfinderDFS
{

private Integer[] edgeTo; <«

public PathfinderDFS (Graph G, int s)
{

edgeTo = new Integer[G.V()]; <«
edgeTo[s] = s;
dfs (G, s);

}
private void dfs(Graph G, int v)
{
for (int w : G.adj(v))
if (edgeTo[w] == null) 1
{
edgeTo[w] = v; —
dfs (G, w);

}

public Iterable<Integer> pathTo (int v)
// Stay tuned.

replace marked[] with instance
variable for parent-link
representation of DFS tree

initialize it in the constructor
with Integer, all values are initially null

not yet visited

set parent link

add method for client
to iterate through path

Depth-first-search (pathfinding) for undirected graphs [slightly different version]

public class PathfinderDFS

{

private int s;
private boolean[] marked;

private int[] edgeTo; »
public PathfinderDFS (Graph G, int s)
{
edgeTo = new int[G.V()]; |
marked = new boolean[G.V()];
this.s = s; «—
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked([w]) “T
{
edgeTo[w] = v; “T
dfs (G, w);
}
}
public boolean hasPathTo (int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v) «—
// Stay tuned.
}
DFS pathfinding trace in a digraph
order depends on
digraph representation
marked[] edgeTo[]
012345 ... 012345 ...
dfs(0)
dfs(5) 1 0
dfs(4) 1 5
dfs(3) 1 4
check 5 1
dfs(2) 3
check 0 1
check 3
2 done
3 done
check 2
4 done
5 done
dfs(1) 0
1 done 1
0 done 111111 -03450

add instance variable for parent-link
representation of DFS tree

initialize it in the constructor

remember source (for pathTo())

clearer test for “not yet visited”

set parent link

method for client to test
whether path exists

method for client
to iterate through path

DAYA
P
DIAYA
R
B—pep
A

g
O—®

} @.

oo
op

5%

23

Depth-first-search (pathfinding) for digraphs

public class PathfinderDFS
{
private int s;
private boolean[] marked;
private int[] edgeTo; T

public PathfinderDFS (Digraph G, int s)
{

edgeTo = new int[G.V()]; €«
marked = new boolean[G.V()];
this.s = s; —F—
dfs (G, s);
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) ——
{
edgeTo[w] = v; T
dfs (G, w);
}
}
public boolean hasPathTo (int v)]

{ return marked[v]; }

public Iterable<Integer> pathTo(int v) —
// Stay tuned.

add instance variable for parent-link
representation of DFS tree

initialize it in the constructor

remember source (for pathTo())

not yet visited

set parent link

method for client to test
whether path exists

method for client
to iterate through path

Depth-first-search (pathfinding iterator) [from lecture 12]

edgeTo[] is a parent-link representation of a tree rooted at s

AN

0

47N

edgeTo[Vv]
Y

M

A~ Gm—

public Iterable<Integer> pathTo (int v)
{
Stack<Integer> path = new Stack<Integer>();
path.push(v)
while (v != edgeTo[v])
{
v = edgeTo[v];
path.push(v) ;
}

return path;

O
NN

Depth-first-search (pathfinding iterator) [slightly different version]

edgeTo[] is a parent-link representation of a tree rooted at s

___> edgeTo[v] - 2 6 4 7 3 0 2
v 01 2 3 4 5 6 7
7 N
h\|

e~ Cm— 0

public Iterable<Integer> pathTo(int v)
‘ (2)

if (hasPathTo(v)) return path(s, v);

else return null;

}

private Stack path(int s, int v)

{ // Find path to v from any ancestor s in tree.
Stack<Integer> stack = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])

stack.push(x) ;
stack.push(s) ;
return stack;

25

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

* Vertex = object.

* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

= 27

Reachability application: program control-flow analysis

Every program is a digraph.
* Vertex = basic block of instructions (straight-line program).
* Edge = jump.

Dead code elimination.

Find (and remove) unreachable code.

Infinite loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector
Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.

» Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

= 28

Depth-first search (DFS)

DFS enables direct solution of simple digraph problems.

* Reachability.

* Cycle detection.

* Topological sort.
* Transitive closure.

Basis for solving difficult digraph problems.

* Directed Euler path.
e Strong connected components.

Digraph BFS application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton. edu.

Solution. BFS with implicit graph.

BFs.
¢ Start at some root web page.
* Maintain a gueue of websites to explore.
¢ Maintain a set of discovered websites.
» Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

29

Breadth-first search in digraphs
Every undirected graph is a digraph.

* Happens to have edges in both directions.
* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:
= remove the least recently added vertex v
= add each of v's unvisited neighbors to the
queue and mark them as visited.

Property. Visits vertices in increasing distance from s.

Web crawler: BFS-based Java implementation

Queue<String> q = new Queue<String>(); <«
SET<String> visited = new SET<String>() ; D

String s = "http://www.princeton.edu";
q.enqueue (s) ; <
visited.add(s) ;

while (!qg.isEmpty())
{
String v = g.dequeue() ;
StdOut.println(v);
In in = new In(v);
String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile(regexp); . |
Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
{
String w = matcher.group() ;
if (!'visited.contains(w))
{
visited.add(w) ; <«
q.enqueue (w) ;

queue of websites to crawl
set of visited websites

start crawling from website s

read in raw html for next website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

Graph-processing challenge (revisited)

Problem. Is there an undirected path between v and w ?

Goals. Linear preprocessing time, constant query time.

How difficult?
* Any COS 126 student could do it.

/ * Need to be a typical diligent COS 226 student.

* Hire an expert.
 Intractable.

» transitive closure * No one knows.

Digraph-processing challenge 1

Problem. Is there a directed path from v tow?

Goals. Linear preprocessing time, constant query time.

How difficult?

J e

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

I

can't do better than V2
(reduction from boolean matrix multiplication)

Impossible.

33

Transitive closure

NS

0
® =
ool
° 4

Def. The transitive closure of a digraph G is another digraph with a directed

edge from v to w if there is a directed path from v fo win 6.

digraph G

transitive closure TC(G)

mhwmp-o|

mbwmp-o|

oOoook+rHrH|O

corRrERKE|O

OO0OOHHO|F

COoORKRRR|R

OO KFOKF|IN

cCoORrRKRERKE|N

oOoOkrHrOOO|W

OoOkrHrOOO|W

HKFEFFEFOOO|N

RFRRRRRP|s

HrRrOOOR WU

RRRRRER O

<«

—— digraph G is usually sparse

—— TC(6) is usually dense

35

Digraph-processing challenge 1 (revised) Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v tow? Problem. Is there a directed path from v tow?

Goals. ~ V2 preprocessing time, constant query time. Goals. ~ V E preprocessing time, ~ V2 space, constant query fime.

How difficult? How difficult?

* Any COS 126 student could do it. * Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student. v/« Need to be a typical diligent COS 226 student.

* Hire an expert. oot * Hire an expert. T ot
¢ Intractable. 06 Intractable. Use DFS once for each vertex Bta

to compute rows of fransitive closure

v/ * No one knows. «<—— open research problem 0—2 * No one knows. 02
. 34 . 34
* Impossible. 2 » Impossible. \ _—

0% ONOR ORONOR

/ 50 / 5-0
e o 355 @ 355
2-1 251

6—4 6—4
3-1 3-1
37 38
Transitive closure: Java implementation
Use an array of pFsearcher objects, one for each row of transitive closure.
public class TransitiveClosure
{
private DFSearcher[] tc; <«——+—— array of DFSearcher objects

public TransitiveClosure (Digraph G)
{
tc = new DFSearcher[G.V()]; < | initialize array
for (int v = 0; v < G.V(); v++)
tc[v] = new DFSearcher (G, v);

}

public boolean reachable(int v, int w) is there a directed path

} { return tc[v].visited(w); } from v tow ? » DAGs

Similar approach (array of PathFinderDFs objects) can provide paths.

Warning: Not for use with huge graphs (~V? space)

39 40

Digraph application: scheduling Digraph application: scheduling

Scheduling. Given a set of tasks to be completed with precedence Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks? constraints, in what order should we schedule the tasks?

Graph model.

 Create a vertex v for each task. No solution iff digraph has a directed cycle

* Create an edge v—w if task v must precede task w.

tasks

. read programming assignment
download files
. write code

d
precedence ————> . attend precept

constraint graph

w N = o

First problem. Make sure digraph has no cycles.

feasible
schedule
41
Digraph-processing challenge 2a Cycle detection applications
Problem. Check that a digraph is a DAG. * Causalities.

Goal. Linear time.

Email loops.
* Compilation units.
* Class inheritance.

How difficult? * Course prerequisites.
* Any COS 126 student could do it. * Deadlocking detection.
* Need to be a typical diligent COS 226 student. 0=1 * Precedence scheduling.
0—6
* Hire an expert. T 02 » Temporal dependencies.
¢ Intractable. S ij * Pipeline of computing jobs.
* No one knows. ed * Check for symbolic link loop.
» Impossible. E=d * Evaluate formula in spreadsheet.
6—9
7—6
8—7
910
911
912

012387645910 11 12 11-12

43

Cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{

}

% javac A.java

A.java:1: cyclic inheritance
involving A

public class A extends B { }

1 error

public class B extends C

{

public class C extends A
{

}

Cycle detection application: symbolic links

The Linux file system does not do cycle detection.

a0 o0 oe

o

ln -s a.txt b.txt
1n -s b.txt c.txt
ln -s c.txt a.txt

% more a.txt
.txt: Too many levels of symbolic links

45

47

Cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

{

® 00 Workbook1
< A B C D
1 "=Bl1+1" "=Cl+1" "=Al+1"
2
8
4
5
6
7 Microsoft Excel cannot calculate a formula.
8 M Cell references in the formula refer to the formula's
@® result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
i help for using it to correct your formula.
« To continue leaving the formula as it is, click Cancel.
g (Gance)
14
15
16
17
18
» 1 JA_Sheet1 [Sheet2 | Sheet3
46
Finding a cycle in a digraph: Java implementation
public class DigraphCycleFinder
private boolean[] marked;
private int[] edgeTo;
private Stack<Integer> cycle; <«—t— for result
private boolean[] onStack; <«—+— vertices on recursive stack
public DigraphCycleFinder (Digraph G)
{
onStack = new boolean[G.V()];
edgeTo = new int[G.V()];
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++) « L cdllrecursive method for
if ('marked[v]) dfs(G, v); each unmarked vertex
}
private void dfs(Digraph G, int v) <«—F— recursive method
// See next slide
public boolean isDAG() <«—+— DAG iff no cycle found
{ return cycle == null; }
public Iterable<Integer> cycle() <«—+— value set by dfs () if cycle found
{ return cycle; }
48

Finding a cycle in a digraph: Java implementation (continued)

private void dfs(Digraph G, int v)
{
onStack[v] = true;
marked[v] = true;
for (int w : G.adj(v))
if (cycle !'= null) return;
else if (!marked[w])
{ edgeTo[w] = v; dfs(G, w);
else if (onStack[w])
cycle = path(w, v);
onStack[v] = false;

}

private Stack path(int s, int v)
// Same as for PathfinderDFS.

}

<«—+— done if cycle found

<«—+— w must be ancestor of v in edgeTo[]

Topological sort

DAG. Directed acyclic graph.

ot

Application. Scheduling.

Solution. DFS (what elsel).

49

51

Finding a cycle in a digraph

marked[] edgeTo[] onStack[]
012345 012345 012345
dfs(0)
dfs(5) 1 0 1
dfs(4) 1 5 1
dfs(3) 1 4 1
check 50 100111 ---450 100110Q)

Reverse DFS postorder in a digraph: Java implementation

public class PostorderDFS

{
private boolean[] marked;
private Stack<Integer> order;

public PostorderDFS (Digraph G)
{
marked = new boolean[G.V()];
order = new Stack<Integer>();
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs(G, Vv);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
order.push(v) ;

}

public Iterable<Integer> reverse()
{ return order; }

<«

returns all vertices in
“reverse DFS postorder”

Reverse DFS postorder in a DAG Reverse DFS postorder in a DAG: an amazing fact

Reverse DFS postorder of a DAG is a topological order!

marked[] order marked[] order
05 05 |
02 dfs (0) : 1000000 02 dfs (0) : 1000000
dfs (1) : 1100000 dfs (1) : 1100000 @
0= dfs (4) : 1100100 - o O=4 dfs (4) : 1100100 -
3—-6 4 done: 4 3-6 4 done: 4 é
355 1 done: 41 355 1 done: 41
dfs(2) : 1110100 @ @ dfs(2) : 1110100
o= 2 done: 412 A= S 2 done: 412 @
54 dfs (5) : 1110110 / 54 dfs (5) : 1110110 ®
o @ e
6—0 5 done: 4125 6—0 5 done: 4125
0 done: 41250 0 done: 41250 0
352 o 352
14 154
dfs (3) : 1111110 dfs (3) : 1111110
dfs (6) : 1111111 dfs (6) : 1111111
o e o 6 done: 412506 oo e o 6 done: 412506 ©
3 done: 4125063 3 done: 4125063 G
reverse DFS reverse DFS
posforder‘_> 3605214 53 pos‘ror‘char_> 3605214 54
Topological sort ina DAG: correctness proof
Reverse DFS postorder of a DAG is a topological order!
Pf. Consider any edge v—w. When dfs (v) is called: d£s(0) ¢

* Case 1: afs(w) has already been called and returned.

Thus, w was done before v.

dfs(5):

5 done:

* Case 2: dfs(G, w) has not yet been called. 0 done:

CFO-© OO

It will get called directly or indirectly

Exi ———> dfs(3):

by dafs (e, v) and will finish before dats(c, v).
. case 2 é
Thus, w will be done before v.
dfs(6) :
case 1<:6 e
3 done:

* Case 3: dfs(c, w) has already been called,

» strong components

but has not returned.

Can't happen in a DAG. v—w makes a cycle

3's neighbors are all done
before 3 is done, so
they all appear AFTER 3

Strongly connected components

Def. Vertices v and w are strongly connected if
there is a directed path from v to w
and a directed path from w to v.

(Equivalent) Vertices v and w are strongly connected if
there is a directed cycle containing v and w

strongly connected

. . component—\'
Def. A sfrong component is a maximal subset

of strongly connected vertices. _é

directed cycle —\'

57

Digraph-processing challenge 3

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

use DFS twice
to find strong components

How difficult? (stay tuned)

* Any COS 126 student could do it. l

* Need to be a typical diligent COS 226 student.

* Hire an expert (or a COS 423 student).

¢ Intractable.

* No one knows. 4 strong components

* Impossible.

59

Examples of strongly connected digraphs

0§

Ecological food web graph

Vertex = species.
Edge: from producer o consumer.

~ u d
M o~ vole \ greategret
fox ,’,'{ ~ &

oot blae-gll fish

algae (magnified)

Strong component. Subset of species with common energy flow.

60

GR

G

Software module dependency graph

Vertex = software module.
Edge: from module to dependency.

Firefox

Internet Explorer
Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

61

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components
 Run DFS on GR to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

0

B
%

0530
o] R0}
@oe oo orocoollo oo oholloto
SR
;{ dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
O T T oW

1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 dfs(8)
dfs(3) dfs(9) check 0 check 7
check 5 check 11 6 done check 9
dfs(2) dfs(10) 8 done
check 0 check 12 7 done
iti H heck 3 10 done
Proposition. Second DFS gives i o4
done
3 done 12 done
I check 2 11 done
strong components. (1), shec
5 done

check 1
0 done

63

Strong components algorithms: brief history

1960s: Core OR problem.
* Widely studied; some practical algorithms.
* Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

* Classic algorithm.

* Level of difficulty: CS226++.

* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

* Forgot notes for teaching algorithms class; developed alg in order to teach ift!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

* Gabow: fixed old OR algorithm.
¢ Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju proof sketch

Proposition: Kosaraju's algorithm computes strong components

Lemma. Every vertex s visited by dfs (r) is strongly connected to r.
Proof of Lemma:
* Path from r to s exists (dfs () follows edges).

Thus, path from s fo r exists in GR e arste) B afele)
* The only possibility for the dfs () in R — ”'m(s) e
implies path from r to s exists in GR.
* Thus, s and r are strongly connected in GR. PN teir B s done
* Thus, s and r are strongly connected in 6. s done
- done | | = done
= done X X
Proof of Proposition: 4 * P;f:,imm "’“fuss(f)
All vertices visited by dfs (r) nest

are strongly connected because
they are all strongly connected to r.

62

64

Finding connected components in an undirected graph with DFS (from Section 4.1) Finding strongly connected components in a digraph with DFS (Kosaraju)

for (int s : postorder.reverse())

Digraph-processing summary: algorithms of the day

single-source
reachability bFS

DFs
(from each vertex)

0
. &
transitive closure 0‘0

mewnnol

topological sort OM\ o 0.FO O DFS

(DAG)

Kosaraju

strong components DFS (twice)

67

