4.1 Undirected Graphs Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
o} * Interesting and broadly useful abstraction.
roblem * Challenging branch of computer science and discrete math.

veriex * Hundreds of graph algorithms known.

Busse20.d-yde.g

ors
connected ExN
tr

yo.eas

* Thousands of practical applications.
(=]
3

-

e
epresentation -
Many consider 5

VerticeSmi > graph AP
edge i » maze exploration

Algorithms o DFs * » depth-first search

graphs._ 9z » breadth-first search

edges m » connected components
g » challenges

References: Algorithms in Java (Part 5), 3 edition, Chapters 17 and 18

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - March 7, 2010 5:41:48 PM

Protein interaction network The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

heep: //wew.pl

/10.1371/:

1 0004803

Kevin's facebook friends (Princeton network)

.0
7 pavide &

o Robert . anderbel
o Thais elo
« Debbie Peikes
7 Yorman vu
? Sophie
1$ son

nabi g,
/ . ouh
4. mion

nethon Wung

High-school dating

Reference: Bearman, Moody and Stovel, 2004

image by Mark Newman

One week of Enron emails

KEY.
EMPLOYEE (E-MAIL ADDRESS).---

AT LEAST ONE E-MAIL CONTACT-
BETWEEN EMPLOYEES

=i Tl Lzl o T,

berjaminrogers o shankman vweldon

E 0 =

ana ones
e}
orsanse
o tosmnbatey
daney mecary donbagpean —
PR echatae @ sirioyboion
ron v Cntdoan
danongeon g o [pragumny @ stacy dckson
awva doaney s carand @ shotey corman
e peingers trad ek
anta paringre i Pyp——
amatng @ satybeck
ewtossm o —— The analysis detected Pee—
a.pones g g ananomaly: anewe- | "
— mail address for this)
anchqugiey @ L o lavorato g person, who had been | @ ity
i : ;
o haedcko g mm mz: ‘phillip.allen’ Lo: 131 i st @ rchard sanders
jm schwiager revious weeks.
etzaboth sager g P ® s bachen @ rchardring
oo parks @ i
[Eep— e pross —
e oo cuenet @ /4 @ i
A dasoven
1.campbel @ john.amold @ ™ @ phisiplove
. © sary ychaiz
gusober @ jntonoy ® ames.stois © bt romas
v ®wpuena
e ot 2t m scon
e L4 o ® viadi pimenov. .
T
regwhatey @ Ly y p © brisphoncal © m presio
anhemander
hokden sastury @ " ® o aonotoo Lyp—
oy townsand p
s o ke grgsty © tomas martn o
james doick @ WAy (s on
wson willams Kevn ruscin g mike meconr
- @ € ® steven.south fo i et
uscnwollo @ @ © mchetooay
Loay
ety pocie @ o e® > © michoto cash
o shankran @ u® o ® chertben ©mtomey
i arnan bodonr
jeft.skilling ® ‘matt motiey® . ® Oanangey © matt sman
[peers e 3 Y ? S © marcoti
o st oo © markiayor
o @ oo sanchaz hck © manasscte
Company leaders e-mail |"* Py "“:f“
less frequently, leaving | S0 ® o hosrd ‘Sources: O
some communication to o ® o [t CuoyE Prabe
subordinates. om . ¢ O and Vouogeer
| s sagang Hopkns
amkesr T 9 0 @ ? P ooyt o
o symas o tary campiet
g marn oy watson
i
Finding Patterns kenneth. “

In Corporate Chatter

Graph applications

communication
circuit
mechanical
financial
fransportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
Jjoint
stock, currency
street infersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

Graph isomorphism. Do two adjacency matrices represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph terminology

vertex —\

cycle —

spanning tree—\
v

tree —>

path ﬁ'

Graph representation Graph APT

Vertex representation.

* This lecture: use integers between O and V-1. public class Graph graph data type
 Applications: convert between names and integers with symbol table. Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
° o void addEdge(int v, int w) add an edge v-w
Iterable<Integer> adj(int v) return an iterator over the neighbors of v
e ° e ﬁ ° ° ° int V() return number of vertices
symbol table
‘ ‘ 5 % more tiny.txt
In in = new In(); f read graph from 7
Graph G = new Graph (in) ; standard input 01
02
for (int v = 0; v < G.V(); v++) 05
for (int w : G.adj(v)) < processes both 06
/* process edge v-w */ sl 34
Issues. Parallel edges, self-loops. P g 35
46
13
Set of edges representation Adjacency-matrix representation
Maintain a list of the edges (linked list or array). Maintain a two-dimensional V-by-V boolean array;
for each edge v-w in graph: adj[v][w]l = adj[w] [v] = true.
two entries
for each edge
Q 01 Q
) 2 3 4 5 6 7 8 9 10 11
02 o o \z o 0 1 1 0 0 0 0O 0 0
ORORO > ORORCEEEHER NS I
06 21 oNo oN¢ 0 0 0 0 0 0 0 o
34 sl o o 0 1 0 0o 0 0 0 0 o0
o o 35 o ° 4/ 0 0 ON1 O 1 0 0 O O 0 0 O
/ 46 / sl 1 0 o 1 0 0 0 0 0 0 0 0O
e 78 o s/]1 o o 0o 0o 0 0 0o 0o 0 0 0 o0
9 10 710 o 0o 0o 0o 0o 0 0 1 0 0 0 O
9 11 e/ o o 0o 0o 0o 0 0 1 0 0O 0 0 O
° @ 9 12 o @ sfo 0o o o o 0 o0 0 O O 1 1 1
[l o o0 0o o 0 0o 0 0 0 1 0 0 0
n/0 o 0 0o 0 0 0 0 0 1 0 o0 1
@ @ @ @ 2/ 0 0 0 o 0 0 0 0 0 1 0 1 0

Adjacency-matrix representation: Java implementation

public class Graph
{

private final int V;
private final boolean[][] adj;

public Graph(int V)
{
this.V = V; B
adj = new boolean[V] [V];

public void addEdge (int v, int w)
{
adj[v] [w] = true; D
adj[w] [v] = true;

public Iterable<Integer> adj(int v)
{ return new AdjIterator(v); }

Adjacency-list representation: Java implementation

public class Graph
{
private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;

adj = (Bag<Integer>[]) new Bag[V];, «—]

for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge (int v, int w)
{

adj[v].add (w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency matrix

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors
(code for AdjIterator omitted)

<«—F+— adjacency lists

(use Bag ADT)

create empty graph
with V vertices

add edge v-w
(parallel edges allowed)

—— iterator for v's neighbors

Adjacency-list representation

Maintain vertex-indexed array of lists (use Bag abstraction)

Graph representations

0 5 2 1 6 o

1

two entries

for each edge 2 -
24 4 o
4: 6 e—— 5

Bag objects

In practice. Use adjacency-set (or adjacency-list) representation.

* Algorithms based on iterating over edges incident to v.
* Real-world graphs tend to be “"sparse.”

representation

list of edges
adjacency matrix
adjacency list

adjacency set
*

huge number of vertices,
small average vertex degree

edge between iterate over edges

space T Gl v and w? incident to v?
E E
\z 1 1 Vv
E+V 1+ degree(v) degree(v)
E+V log (degree(v)) log (degree(v)) degree(v)

used in IntroJava

* only if parallel edges allowed

» maze exploration

21

Trémaux maze exploration

Algorithm.
* Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

23

Maze exploration

Maze graphs.
* Vertex = infersection.
* Edge = passage.

Goal. Explore every passage in the maze.

Maze exploration

o

Maze exploration Rat in a maze

S|l1]2]3f4]s]6 10{1]]
71819
e
o pause p 0 p
0
pa
0 b d rep
0) of ga
0 premad
S
F
F blocked
peed
place walls | find path pause & <>
clear path || clear maze || Random =]

25

Depth-first search

Goal. Systematically search through a graph.
Tdea. Mimic maze exploration.

DFS (to visit a vertex s)

Mark s as visited.
Recursively visit all unmarked
vertices v adjacent to s.

» depth-first search Challenge.

* Masks a complex recursive process.
* [stay tuned]

Typical applications.
* Find all vertices connected to a given s.
* Find a path from s to t.

27

Design pattern for graph processing

Design goal. Decouple graph data type from graph processing.

// print all vertices connected to s

In in = new In(args[0]);
Graph G = new Graph(in) ;

int s 0;

DFSearcher dfs = new DFSearcher (G, s);

for (int v = 0; v < G.V(); v++)
if (dfs.isConnected(v))
StdOut.println(v) ;

Typical client program.
¢ Create a Graph.

* Pass the craph to a graph-processing routine, e.g., bFsearcher.

¢ Query the graph-processing routine for information.

Depth-first search (warmup)

public class DFSearcher
{

private boolean[] marked;

public DFSearcher (Graph G, int s)
{
marked = new boolean[G.V()];
dfs (G, s);

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
dfs (G, w);

public boolean isConnected(int v)
{ return marked[v]; }

29

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Depth-first search (warmup)

Goal. Find all vertices connected to a given s.

Tdea. Mimic maze exploration.

Algorithm.
* Use recursion (ball of string).
¢ Mark each visited vertex

* Return (retrace steps) when no unvisited options.

Data structure
e boolean[] marked to mark visited vertices

Depth-first search (warmup) equivalent alternate version

public class DFSearcher
{

private boolean[] marked;

public DFSearcher (Graph G, int s)
{
marked = new boolean[G.V()];
marked[s] = true;
dfs (G, s);

private void dfs(Graph G, int v)
{
for (int w : G.adj(v))
if (!'marked[w]) dfs (G, w);
{ marked[w] = true; dfs(G,

public boolean isConnected(int v)
{ return marked[v]; }

w) ;

-~

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Flood fill

Photoshop "magic wand"

33

Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

e Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue @5

Graph-processing challenge 1

Problem. Flood fill.
Assumptions. Picture has millions to billions of pixels.

How difficult?

* Any COS 126 student could do it.

* Need fo be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

* Impossible.

Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue

Graph-processing challenge 2

Problem. Is there a path froms tot?

How difficult?

e Any COS 126 student could do it.
* Need to be a typical diligent COS 226 student.
 Hire an expert.

¢ Intractable.

* No one knows.

37

Paths in graphs: union find vs. DFS

Goal. Is there apath from s to t?

preprocessing fime

union-find V +E log* V log*V t \Y
DFS E+V 1 E+V
1 amortized

If so, find one.
¢ Union-find: not much help (run DFS on connected subgraph).
* DFS: easy (see next slides).

Union-find advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional fo its length.

39

Graph-processing challenge 2A

Problem. Find a path from s to t ?
Assumption. Any path will do.

iilestiiacal
%
ol

How difficult? JEegesl p=h GHELEEER
s

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected to a given s.
Tdea. Mimic maze exploration.

Algorithm.

* Use recursion (ball of string).

* Mark each visited vertex by keeping track of edge taken to visit it.
* Return (retrace steps) when no unvisited options.

Data structure

* Integer[] edgeTo instead of boolean[] marked

* edgeTo[w] == null means that w has not yet been visited

* edgeTo[w] == v means that edge v-w was taken to visit v the first time

Depth-first-search (pathfinding)

public class PathfinderDFS
{

private Integer[] edgeTo;

public PathfinderDFS (Graph G, int s)
{
edgeTo = new Integer[G.V()];
edgeTo[s] = s;
dfs (G, s);
}
private void dfs(Graph G, int v)
{
for (int w : G.adj(v))
if (edgeTo[w] == null)
{
edgeTo[w] = v;
dfs (G, w);

}

public Iterable<Integer> pathTo(int v)

// Stay tuned.

replace marked[] with instance

<“<——F—— variable for parent-link

representation of DFS tree

initialize it in the constructor

—
with Integer, all values are initially null

<«——F—— not yet visited

<«———F—— set parent link

L add method for client
to iterate through path

DFS pathfinding trace

a way to truly understand
maze exploration

adjacency lists

adj

N o v A W N RO

~rls a3

41

' S finished

N 3 finished
—~— finished

7 finished

2 finished

6 finished

0 finished ®

DFS pathfinding trace

a way to truly understand

adjacency lists

S+ 3] e

Depth-first-search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s

N
—
>
|
A~ Cm—

edgeTo[Vv] 6 4
v 2 3

EN

0 2
0 1

public Iterable<Integer> pathTo(int v)
{
Stack<Integer> path = new Stack<Integer>();
path.push(v)
while (v != edgeTo[v])
{
v = edgeTo[v];
path.push(v) ;
}

return path;

maze exploration N ’7?
Jyﬁ@éf i
\

: i2

2 \ ® =©)

3

6 \ ®

7
N

0-6

2-1

O

NN

42

44

DFS summary

Enables direct solution of simple graph problems.
/ ¢ Find path from s fo t.

* Connected components (stay tuned).

¢ Euler tour (see book).

* Cycle detection (simple exercise).

* Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

* Biconnected components (see book).
* Planarity testing (beyond scope).

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited
Repeat until the queue is empty:
= remove the least recently added vertex v
» add each of v's unvisited neighbors to the queue,
and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

» breadth-first search

45

Breadth-first-search (pathfinding)

public class PathfinderBFS

{
private Integer[] edgeTo;

public PathfinderBFS (Graph G, int s)
{

edgeTo = new Integer[G.V()]; «

edgeTo[s] = s;
bfs (G, s);
}
private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
q.enqueue (s) ;
while ('q.isEmpty())
{
int v = g.dequeue();
for (int w : G.adj(v))
if (edgeTo[w] == null)
{
q.enqueue (w) ;
edgeTo[w] = v;

47

same setup as DFS

46

48

BFS application

* Facebook.
* Kevin Bacon numbers.
» Fewest number of hops in a communication network.

ARPANET LOGICAL MAF, MARCH 1977

[FoP 3 P = PLURIE
ol e o) () (e i [f
FoP-To. [worrery (28800 (ot % Juimos | ‘wears [PETOLN [evecio
Eﬂl%f = = 2 2

(For 0]
Forit
SrawroRo

5|

{For-i9)
i Te e e
[Erop-u]; | [s7poe-ii)
ome o rmas e e

O TP A SATELLITE URCUIT

(PLEASE NOTE TWAT WHILE THIS MAP SHOWS THE HOST POPUL ATION OF THE NE TWORX ACCORDING TO THE BEST
TNFORMATION OB TAINABLE . NG CLAIM CAN BE MAOE FOR 115 ACCURACY)

NAMES SHOWN ARE IMP NAMES, NOT INECESSARILY) HOST NAMES.

ARPANET

Kevin Bacon graph

¢ Include vertex for each performer and movie.
 Connect movie to all performers that appear in movie.
» Compute shortest path from s = Kevin Bacon.

Eeernal Sunshine]
of the Spotless
Ming

A tiny portion of the movie-performer relationship graph

49

51

BFS application

* Facebook.
* Kevin Bacon numbers.
* Fewest number of hops in a communication network.

THE ORACLE
OF BACON

Paula Lemes (1)
FrosNixon (2008)
Kevin Bacon

=) 10 S) (e s 57

50

» connected components

52

Connectivity queries

Def. Vertices vand w are connected if there is a path between them.

Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?

in constant time

) 0.0
: (2 J:2)

D=0
o=

Union-Find? Not quite.

Finding connected components with DFS

public class CCfinder

{
private Graph G;
private Bag<Integer>[] connectedTo;
private Bag<Integer> representatives;

public CCfinder (Graph G)

{
this.G =

representatives = new Bag<Integer>();
connectedTo = (Bag<Integer>[]) new Bag[G.V()];

for (int s = 0; s < G.V(); s++)

/
\

Vertex Component

0 0
1 1
2 1
3 0
4 0
5 0
6 2
7 0
8 2
9 1
10 0
11 0
12 1

53

vertices connected

1o each vertex

L one vertex from
each component

if (connected[s] == null)

{

Bag<Integer> bag = new Bag<Integer>(); «——

representatives.add(s) ; \
dfs(s, s, bag);

has s been visited?

if not, create a bag for
all vertices connected fo s

[s represents them all

\

call recursive method

55

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all

vertices discovered as part of the same component.

Finding connected components with DFS (data structures)

representatives 0

conomfedTo e’e @‘@
z —\
3 :\\ a2 35 e e 0]
==
: E>-
o e
12 :/

i Sy

E+V 1 \

~o 7o))0

0J0.0)

Finding connected components with DFS (continued)

private void dfs(int v, int s, Bag bag)
{

connectedTo[v] = bag;

bag.add(v) ;
for (int w : G.adj(v))
if (connectedTo[w] == null)

dfs(w, s, bag);
}

public boolean connected(int v, int w)
{ return connectedTo[v] == connectedTo[w]; } <—— Tricky: object equality!

public Iterable<Integer> representatives()
{ return representatives; }

public Iterable<Integer> connectedTo (int v)
{ return connectedTo[v]; }

57

Connected components application: image processing

Goal. Read ina 2D color image and find regions of connected pixels
that have the same color.

assuming contiguous states

Input. Scanned image. /
Output. Number of red and blue states.

59

!
63 components LH%H

Connected components

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

* Create grid graph.

* Connect each pixel to neighboring pixel if same color.
* Find connected components in resulting graph.

60

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

e Vertex: pixel.

* Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
 Hire an expert.

* Intractable.

* No one knows.

* Impossible.

N

black = 0
white = 255

61

BB WNNMHOOOO
)
o es B WNOOUNKE

el
5 /

0-1-2-3-4-2-0-6-4-5-0

63

» challenges

62

Bridges of Kanigsberg
The Seven Bridges of Kohigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler four. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).

64

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

- 2)— 6
How difficult? e
e Any COS 126 student could do it.)/// %
* Need to be a typical diligent COS 226 student. 5
 Hire an expert. O=5-8=0-G=2=1=

¢ Intractable.
¢ No onhe knows.
* Impossible.

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

1
0

xﬁj
)}
6)

5
Howldiffieult? Q}>

e Any COS 126 student could do it. 3
* Need to be a typical diligent COS 226 student.

 Hire an expert.

* Intractable.

* No one knows.

* Impossible.

B b WWNH OO oo
o ase NN

VB WWNNKREO

oo U s WNN

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

* Any COS 126 student could do it.)//
* Need to be a typical diligent COS 226 student. s

* Hire an expert.
 Intractable. 1
* No one knows. K
* Impossible.

oo uu s oo

BUBRWWN O R

AONWUVLANNNDN
B WoWwwo s R

