
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:54:35 PM

3.4 Hash Tables

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ” — M. A. Jackson

ST implementations: summary

Q. Can we do better?
A. Yes, but with different access to the data.

3

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as index.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

7

Equality test

Needed because hash methods do not use compareTo().

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Default implementation. (x == y)
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined implementations. Some care needed.

do x and y refer to
the same object?

equivalence
relation

Seems easy

public class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Record y)
 {

 Record that = y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

8

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Record that = (Record) y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

9

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same

10

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1. Phone numbers.

• Bad: first three digits.

• Better: last three digits.

Ex 2. Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Practical challenge. Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

key

table
index

11

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

12

Implementing hash code: integers and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

• Horner's method to hash string of length L: L multiplies/adds.

• Equivalent to h = 31L-1 · s0 + … + 312 · sL-3 + 311 · sL-2 + 310 · sL-1.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

13

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Ex. Strings (in Java 1.1).

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

14

A poor hash code

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

15

Implementing hash code: user-defined types

public final class Record
{
 private String name;
 private int id;
 private double value;

 public Record(String name, int id, double value)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + name.hashCode();
 hash = 31*hash + id;
 hash = 31*hash + Double.valueOf(value).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

16

Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use built-in hash code.

• If field is an array, apply to each element.

• If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Hash code. An int between -231 and 231-1.
Hash function. An int between 0 and M-1 (for use as array index).

17

 Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

18

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ ! M / 2 tosses.

Coupon collector. Expect every bin has " 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
#(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

20

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

21

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem $ can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

• Coupon collector + load balancing $ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

22

Separate chaining ST

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

public class SeparateChainingHashST<Key, Value>
{
 private int N; // number of key-value pairs
 private int M; // hash table size
 private SequentialSearchST<Key, Value> [] st; // array of STs

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 {
 this.M = M;
 st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
 for (int i = 0; i < M; i++)
 st[i] = new SequentialSearchST<Key, Value>();
 }
 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }
}

Separate chaining ST: Java implementation

23

array doubling code omitted

Proposition K. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N/M.

• M too large $ too many empty chains.

• M too small $ chains too long.

• Typical choice: M ~ N/5 $ constant-time ops.
24

Analysis of separate chaining

M times faster than
sequential search

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

equals() and hashCode()

25

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

26

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Use an array of size M > N.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at table index i if free; if not try i+1, i+2, etc.

• Search: search table index i; if occupied but no match, try i+1, i+2, etc.

27

Linear probing

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

28

Linear probing: trace of standard indexing client

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3
 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E R X
 2 5 0 5 6 3 7
 A C S H E R X
 8 5 0 5 6 3 7
 M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

29

array doubling
code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

30

Clustering

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+1, i+2, …

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ ! M / 8

31

Knuth's parking problem

displacement = 3

Proposition M. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = % M keys is:

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

• M too large $ too many empty array entries.

• M too small $ search time blows up.

• Typical choice: % = N/M ~ !.

32

Analysis of linear probing

∼ 1
2

�
1 +

1
1− α

�
∼ 1

2

�
1 +

1
(1− α)2

�

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

ST implementations: summary

33

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

* under uniform hashing assumption

34

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

35

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

36

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.

37

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

38

Hashing vs. balanced trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.

39

