3.3 Balanced Trees

▶ 2-3 trees

- red-black trees
- B-trees

Symbol table review

implementation	guarantee			average case			ordered operations	
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
Goal	log N	log N	log N	log N	log N	log N	yes	compareTo()

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black trees, B-trees.

introduced to the world in COS 226, Fall 2007

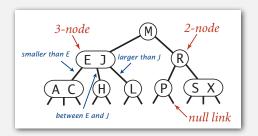
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:30:33 PM

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

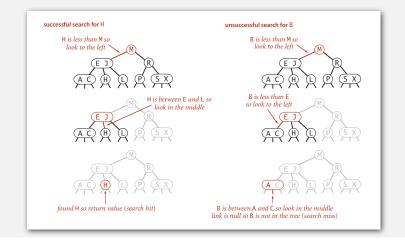


▶ 2-3 trees

- red-black tree
- B-trees

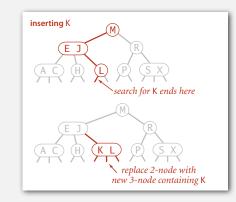
Search in a 2-3 tree

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).



Insertion in a 2-3 tree

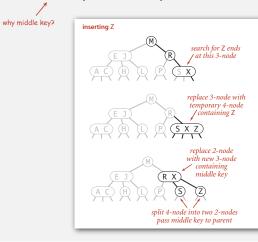
- Case 1. Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.



Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

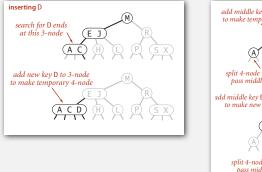
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

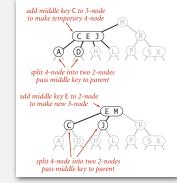


Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.

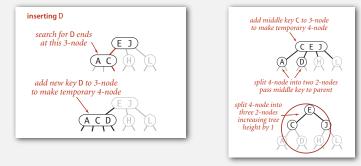




Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

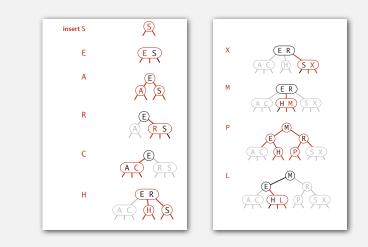
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.



Remark. Splitting the root increases height by 1.

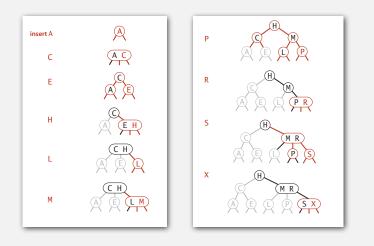
2-3 tree construction trace

Standard indexing client.



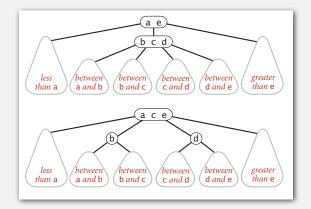
2-3 tree construction trace

The same keys inserted in ascending order.



Local transformations in a 2-3 tree

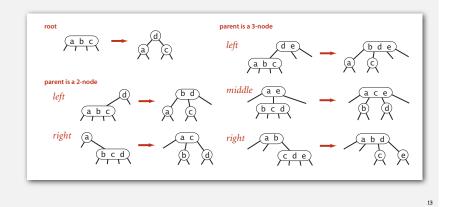
Splitting a 4-node is a local transformation: constant number of operations.



Global properties in a 2-3 tree

Invariant. Symmetric order. Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.



2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

[all 2-nodes]

Tree height.

- Worst case: Ig N.
- Best case: log₃ N ≈ .631 lg N. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

	guarantee			average case		ordered	operations	
implementation	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()

2-3 tree: implementation?

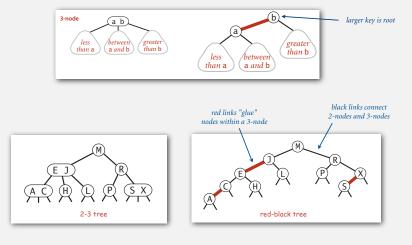
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

- 1. Represent 2-3 tree as a BST.
- 2. Use "internal" left-leaning links as "glue" for 3-nodes.

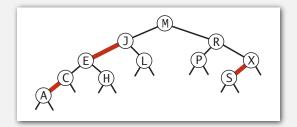


An equivalent definition

A BST such that:

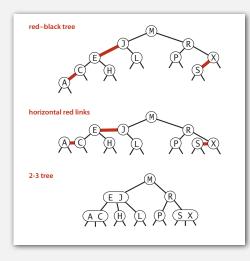
- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"

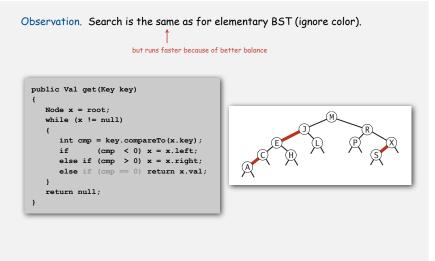


Left-leaning red-black trees: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.



Search implementation for red-black trees



Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.

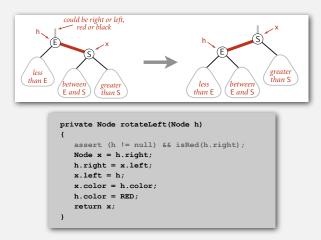
21

Red-black tree representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.



Elementary red-black tree operations

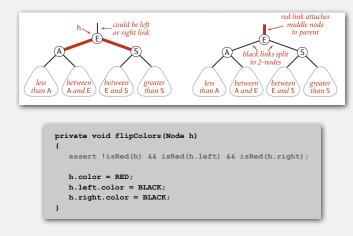


Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right. less than E reater than S between greater less than E S and E S and E than S private Node rotateRight(Node h) assert (h != null) && isRed(h.left); Node x = h.left; h.left = x.right; x.right = h;x.color = h.color; h.color = RED; return x; ł Invariants. Maintains symmetric order and perfect black balance.

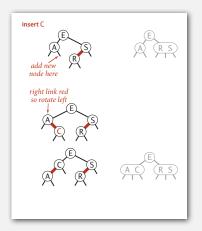
Elementary red-black tree operations



Invariants. Maintains symmetric order and perfect black balance.

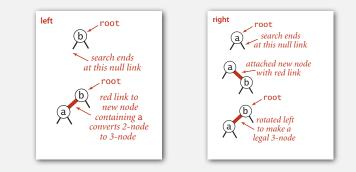
Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black tree operations



Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

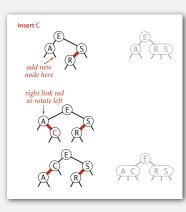


28

Color flip. Recolor to split a (temporary) 4-node.

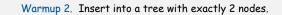
Insertion in a LLRB tree

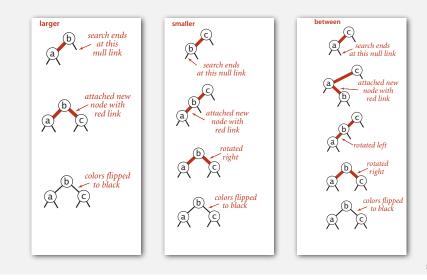
- Case 1. Insert into a 2-node at the bottom.
- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.



Insertion in a LLRB tree

29

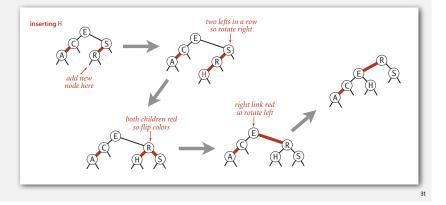




Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

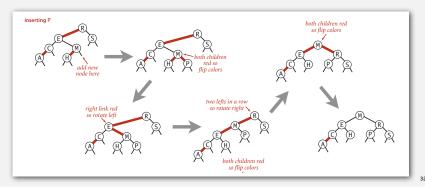
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).



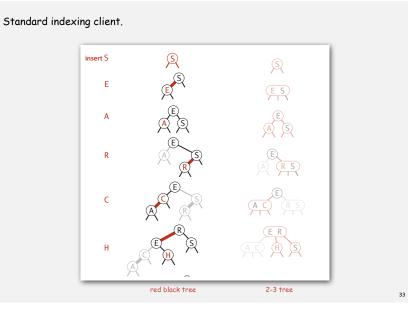
Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat Case 1 or Case 2 up the tree (if needed).

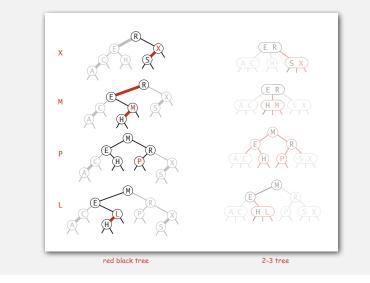


LLRB tree construction trace

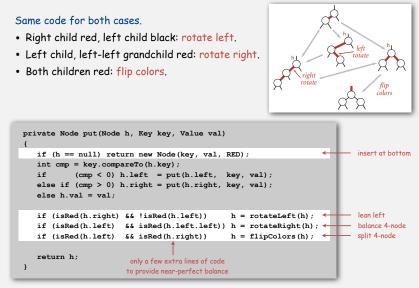


LLRB tree construction trace

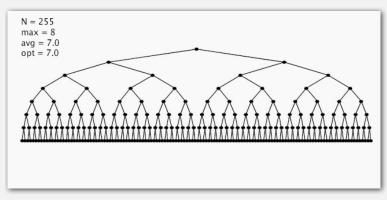
Standard indexing client (continued).



Insertion in a LLRB tree: Java implementation

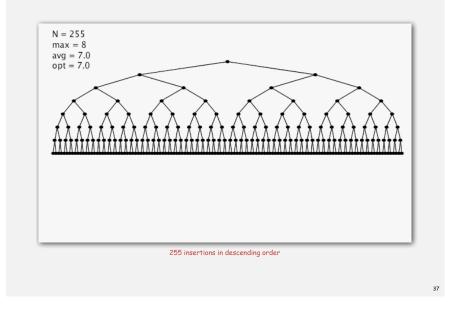


Insertion in a LLRB tree: visualization

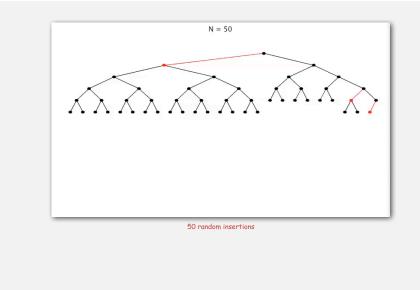


255 insertions in ascending order

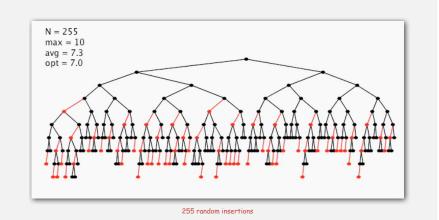
Insertion in a LLRB tree: visualization



Insertion in a LLRB tree: visualization



Insertion in a LLRB tree: visualization

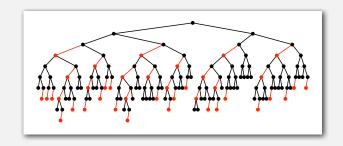


Balance in LLRB trees

Proposition. Height of tree is \leq 2 lg N in the worst case.

Pf.

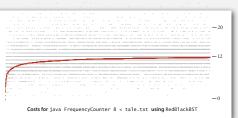
- Every path from root to null link has same number of black links.
- Never two red links in-a-row.



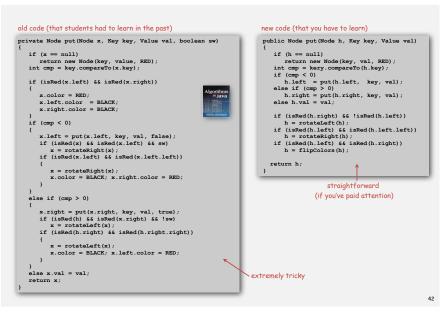
Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

implementation	guarantee				average case	ordered	operations	
mplementation	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	Ν	Ν	lg N	N/2	N/2	yes	compareTo()
BST	Ν	N	Ν	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()
red-black tree	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo()
			_			e of coefficient	t unknown but e	xtremely close to 1



Why left-leaning trees?



Why left-leaning trees?

Simplified code.

- Left-leaning restriction reduces number of cases.
- Short inner loop.

Same ideas simplify implementation of other operations.

- Delete min/max.
- Arbitrary delete.

Improves widely-used algorithms.

- AVL trees, 2-3 trees, 2-3-4 trees.
- Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest balanced BST to implement and the fastest in practice.

2008

1978

1972

43

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk). Probe. First access to a page (e.g., from disk to memory).

Model. Time required for a probe is much larger than time to access data within a page.

Goal. Access data using minimum number of probes.

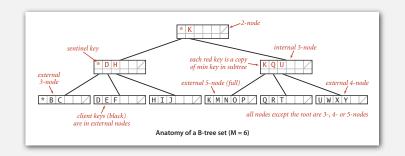
B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M-1 key-link pairs per node.

choose M as large as possible so

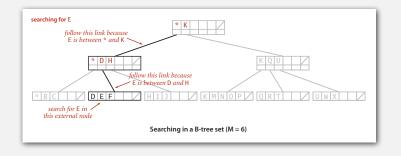
that M links fit in a page, e.g., M = 1000

- At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.



Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

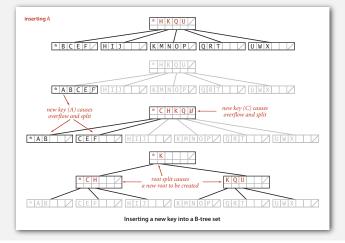


Insertion in a B-tree

- Search for new key.
- Insert at bottom.

47

• Split nodes with M key-link pairs on the way up the tree.



Balance in B-tree

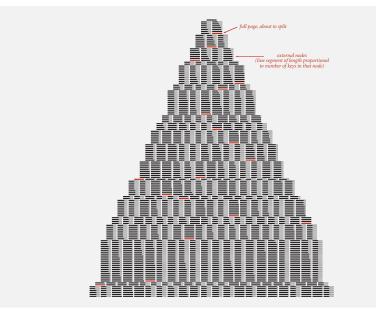
Proposition. A search or an insertion in a B-tree of order M with N keys requires between $log_{M-1}N$ and $log_{M/2}N$ probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4. \leftarrow M = 1000; N = 62 billion log _{MZ} N s 4

Optimization. Always keep root page in memory.

Building a large B tree



Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- JOVO: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Red-black trees in the wild

Common sense. Sixth sense Together they're the FBI's newest team.

Red-black trees in the wild

	ACT FOUR	
FADE	E IN:	
48 INT.	FBI HQ - NIGHT	48
and	nio is at THE COMPUTER as Jess explains herself to Nicole Pollock. The CONFERENCE TABLE is covered with OPEN ERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.	
	JESS It was the red door again.	
	POLLOCK I thought the red door was the storage container.	
	JESS But it wasn't red anymore. It was black.	
	ANTONIO So red turning to black means what?	
	FOLLOCK Budget deficits? Red ink, black ink?	
	NICOLE Yes. I'm sure that's what it is. But maybe we should come up with a couple other options, just in case.	
	onio refers to his COMPUTER SCREEN, which is filled with mematical equations.	
	It could be an algorithm from a binary search tree. A red-black tree tracks every simple path from a node to a descendant leaf with the same number of black nodes.	
	JESS Does that help you with girls?	
	ble is tapping away at a computer keyboard. She finds othing.	