
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 2:31:50 PM

2.2 Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

today

next lecture

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

3

Basic plan.

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves.

4

Mergesort

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

input

sort left half

sort right half

merge results

Mergesort overview

Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

5

Merging

 a[] aux[]

k 0 1 2 3 4 5 6 7 8 9 i j 0 1 2 3 4 5 6 7 8 9

 E E G M R A C E R T - - - - - - - - - -

 E E G M R A C E R T E E G M R A C E R T

 0 5

0 A 0 6 E E G M R A C E R T

1 A C 0 7 E E G M R C E R T

2 A C E 1 7 E E G M R E R T

3 A C E E 2 7 E G M R E R T

4 A C E E E 2 8 G M R E R T

5 A C E E E G 3 8 G M R R T

6 A C E E E G M 4 8 M R R T

7 A C E E E G M R 5 8 R R T

8 A C E E E G M R R 5 9 R T

9 A C E E E G M R R T 6 10 T

 A C E E E G M R R T

input

copy

Abstract in-place merge trace

merged result

6

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

copy

merge

Assertion. Statement to test assumptions about your program.

• Helps detect logic bugs.

• Documents code.

Java assert statement. Throws an exception unless boolean condition is ture.

Can enable or disable at runtime. ! No cost in production code.

Best practices. Use to check internal invariants. Assume assertions will be
disabled in production code (e.g., don't use for external argument-checking).

7

Assertions

assert isSorted(a, lo, hi);

java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)

8

Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, m, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

9

Mergesort trace

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort animation

10

http://www.sorting-algorithms.com/merge-sort

50 random elements

in order
current subarray

algorithm position

not in order

Mergesort animation

11

http://www.sorting-algorithms.com/merge-sort

50 reverse-sorted elements

in order
current subarray

algorithm position

not in order

12

Mergesort: empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Bottom line. Good algorithms are better than supercomputers.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

13

Mergesort: mathematical analysis

Proposition. Mergesort uses ~ 2 N lg N data moves to sort any array of size N.

Def. D(N) = number of data moves to mergesort an array of size N.
 = D(N / 2) + D(N / 2) + 2 N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with T(1) = 0.

• Not quite right for odd N.

• Similar recurrence holds for many divide-and-conquer algorithms.

Solution. D(N) ~ 2 N lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left half right half merge

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

14

Mergesort recurrence: proof 1

D(N)

D(N/2)D(N/2)

D(N/4)D(N/4)D(N/4) D(N/4)

D(2) D(2) D(2) D(2) D(2) D(2) D(2)

2N

D(N / 2k)

2 (2N/2)

2k (2N/2k)

N/2 (4)

...

lg N

2N lg N

= 2N

= 2N

= 2N

= 2N

...

D(2)

4 (2N/4) = 2N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

15

Mergesort recurrence: proof 2

 D(N) = 2 D(N/2) + 2N

D(N) / N = 2 D(N/2) / N + 2

 = D(N/2) / (N/2) + 2

 = D(N/4) / (N/4) + 2 + 2

 = D(N/8) / (N/8) + 2 + 2 + 2

 . . .

 = D(N/N) / (N/N) + 2 + 2 + ... + 2

 = 2 lg N

given

divide both sides by N

algebra

apply to first term

apply to first term again

stop applying, T(1) = 0

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf. [by induction on N]

• Base case: N = 1.

• Inductive hypothesis: D(N) = 2N lg N.

• Goal: show that D(2N) = 2(2N)lg (2N).

16

Mergesort recurrence: proof 3

D(2N) = 2 D(N) + 4N

 = 4 N lg N + 4 N

 = 4 N (lg (2N) - 1) + 4N

 = 4 N lg (2N)

given

inductive hypothesis

algebra

QED

Proposition. Mergesort uses between ! N lg N and N lg N compares to sort
any array of size N.

Pf. The number of compares for the last merge is between ! N lg N and N.

17

Mergesort: number of compares

18

Mergesort analysis: memory

Proposition G. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses O(log N) extra memory.
Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrud, 1969]

 A C D G H I M N U V

 A B C D E F G H I J M N O P Q R S T U V

 B E F J O P Q R S T

two sorted subarrays

merged result

19

Mergesort: practical improvements

Use insertion sort for small subarrays.

• Mergesort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for ! 7 elements.

Stop if already sorted.

• Is biggest element in first half " smallest element in second half?

• Helps for partially-ordered arrays.

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive call.

Ex. See MergeX.java or Arrays.sort().

 A B C D E F G H I J

 A B C D E F G H I J M N O P Q R S T U V

 M N O P Q R S T U V

20

Mergesort visualization

Visual trace of top-down mergesort for with cuto! for small subarrays

"rst subarray

second subarray

"rst merge

"rst half sorted

second half sorted

result

2353.2 ! Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

21

Basic plan.

• Pass through array, merging subarrays of size 1.

• Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!
22

Bottom-up mergesort

Bottom-up mergesort

public class MergeBU
{ // Bottom-up mergesort.
 private static Comparable[] aux; // auxiliary array for merges

 // See page 230 for merge() code.

 public static void sort(Comparable[] a)
 { // Do lg N passes of pairwise merges.
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz) // sz: subarray size
 for (int lo = 0; lo < N-sz; lo += sz+sz) // lo: subarray index
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

Bottom-up mergesort consists of a sequence of passes over the whole array, doing m-by-m merges,
starting with sz equal to 1 and doubling sz on each pass. The final subarray is of size m only when the
array size is an even multiple of sz (otherwise it is less than sz). When N is a power of two, as in our
example, the merges performed are the same as for top-down mergesort, in a different order.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 2

sz = 4

sz = 8

sz = 16

2373.2 ! Mergesort

Bottom line. Concise industrial-strength code, if you have the space.

23

Bottom-up mergesort: Java implementation

public class MergeBU
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz)
 for (int lo = 0; lo < N-sz; lo += sz+sz)
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

24

Bottom-up mergesort: visual trace

2

4

8

16

32

Visual trace of bottom-up mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

25 26

Computational complexity. Framework to study efficiency of algorithms for
solving a particular problem X.

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N ?

• Optimal algorithm = mergesort ?

lower bound ~ upper bound

access information only through compares

Complexity of sorting

27

Decision tree (for 3 distinct elements)

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of tree =
worst-case number

of compares

a < b

yes no

code between compares
(e.g., sequence of exchanges)

28

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ! at least N ! leaves.

at least N! leaves no more than 2h leaves

h

29

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ! at least N ! leaves.

2 h " # leaves " N !

! h " lg N ! ~ N lg N

Stirling's formula

30

Complexity of sorting

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N.

• Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

31

Complexity results in context

Other operations? Mergesort optimality is only about number of compares.

Space?

• Mergesort is not optimal with respect to space usage.

• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that uses ! N lg N compares.

Lower bound may not hold if the algorithm has information about:

• The initial order of the input.

• The distribution of key values.

• The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input,
we may not need N lg N compares.

Duplicate keys. Depending on the input distribution of duplicates,
we may not need N lg N compares.

Digital properties of keys. We can use digit/character compares instead of
key compares for numbers and strings.

32

Complexity results in context (continued)

insertion sort requires only N-1
compares on an already sorted array

stay tuned for 3-way quicksort

stay tuned for radix sorts

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

33 34

Sort by artist name

35

Sort by song name

Comparable interface: sort uses type’s natural order.

36

Natural order

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

37

Generalized compare

Comparable interface: sort uses type’s natural order.

Problem 1. May want to use a non-natural order.
Problem 2. Desired data type may not come with a “natural” order.

Ex. Sort strings by:

• Natural order. Now is the time

• Case insensitive. is Now the time

• Spanish. café cafetero cuarto churro nube ñoño

• British phone book. McKinley Mackintosh

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

pre-1994 order for digraphs
ch and ll and rr

import java.text.Collator; 38

Comparators

Solution. Use Java's Comparator interface.

Remark. The compare() method implements a total order like compareTo().

Advantages. Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.

• Can add any number of new orders to a data type.

• Can add an order to a library data type with no natural order.

public interface Comparator<Key>
{
 public int compare(Key v, Key w);
}

39

Comparator example

Reverse order. Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>
{
 public int compare(String a, String b)
 {
 return b.compareTo(a);
 }
}

 ...
 Arrays.sort(a, new ReverseOrder());
 ...

comparator implementation

client

40

Sort implementation with comparators

To support comparators in our sort implementations:

• Pass Comparator to sort() and less().

• Use it in less().

Ex. Insertion sort.

public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }

41

Generalized compare

Comparators enable multiple sorts of a single array (by different keys).

Ex. Sort students by name or by section.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name sort by section

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

Ex. Enable sorting students by name or by section.

public class Student
{
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECT = new BySect();

 private final String name;
 private final int section;
 ...
 private static class ByName implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.name.compareTo(b.name); }
 }

 private static class BySect implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.section - b.section; }
 }
}

42

Generalized compare

only use this trick if no danger of overflow

43

Generalized compare problem

A typical application. First, sort by name; then sort by section.

@#%&@!!. Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);

44

Sorting challenge 5

Q. Which sorts are stable?
Insertion sort? Selection sort? Shellsort? Mergesort?

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators
‣ sorting challenge

45 46

Sorting challenge 5A

Q. Is insertion sort stable?

A. Yes, equal elements never more past each other.

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Q. Is selection sort stable ?

A. No, long-distance exchange might move left element to the right
of some equal element.

47

Sorting challenge 5B

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

48

Sorting challenge 5C

Q. Is shellsort stable?

A. No. Long-distance exchanges.

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 int h = 1;
 while (h < N/3) h = 3*h + 1;
 while (h >= 1)
 {
 for (int i = h; i < N; i++)
 {
 for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }
 h = h/3;
 }
 }
}

h 0 1 2 3 4

B1 B2 B3 B4 A1

4 A1 B2 B3 B4 B1

1 A1 B2 B3 B4 B1

A1 B2 B3 B4 B1

49

Sorting challenge 5D

Q. Is mergesort stable?

public class Merge
{
 private static Comparable[] aux;
 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

50

Sorting challenge 5D

Q. Is mergesort stable?

A. Yes, if merge is stable.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo m hi

51

Sorting challenge 5D (continued)

Q. Is merge stable?

A. Yes, if implemented carefully (take from left subarray if equal).

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

52

Sorting challenge 5 (summary)

Q. Which sorts are stable ?

Yes. Insertion sort, mergesort.
No. Selection sort, shellsort.

Note. Need to carefully check code (“less than” vs “less than or equal”).

Postscript: optimizing mergesort (a short history)

Goal. Remove instructions from the inner loop.

53

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];

}

Postscript: optimizing mergesort (a short history)

Idea 1 (1960s). Use sentinels.

Problem 1. Still need copy.
Problem 2. No good place to put sentinels.
Problem 3. Complicates data-type interface (what is infinity for your type?)

54

A G L O R

A G H I L M

i

k

0

a[]

aux[]

a[M] := maxint; b[N] := maxint;
for (int i = 0, j = 0, k = 0; k < M+1; k++)
 if (less(aux[j], aux[i])) aux[k] = a[i++];
 aux[k] = b[j++];

H I M S T

j

b[]

M N

! !

Postscript: Optimizing mergesort (a short history)

Idea 2 (1980s). Reverse copy.

Problem. Copy still in inner loop.
55

A G L O R T S M I H

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

copy

reverse copy

merge

Postscript: Optimizing mergesort (a short history)

Idea 3 (1990s). Eliminate copy with recursive argument switch.

Problem. Complex interactions with reverse copy.
Solution. Go back to sentinels.

56

 int mid = (lo+hi)/2;
 mergesortABr(b, a, lo, mid);
 mergesortABr(b, a, mid+1, r);
 mergeAB(a, lo, b, lo, mid, b, mid+1, hi);

Arrays.sort()

57

Sorting challenge 6

Problem. Choose mergesort for Algs 4th edition.
Recursive argument switch is out (recommended only for pros).

Q. Why not use reverse array copy?

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

