
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 1:20:14 PM

2.1  Elementary Sorts

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

Ex.  Student record in a University.

Sort.  Rearrange array of N objects into ascending order.

2

Sorting problem

Goal.  Sort any type of data.
Ex 1.  Sort random numbers in ascending order.

3

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      Double[] a = new Double[N];
      for (int i = 0; i < N; i++)
         a[i] = StdRandom.uniform();
      Insertion.sort(a);
      for (int i = 0; i < N; i++)
         StdOut.println(a[i]);
   }
}

Goal.  Sort any type of data.
Ex 2.  Sort strings from standard input in alphabetical order.

4

Sample sort client

% more words3.txt
bed bug dad yet zoo ... all bad yes 

% java StringSorter < words.txt
all bad bed bug dad ... yes yet zoo

public class StringSorter
{
   public static void main(String[] args)
   {
      String[] a = StdIn.readAll().split("\\s+"); 
      Insertion.sort(a);
      for (int i = 0; i < a.length; i++) 
         StdOut.println(a[i]);
   }
}



Goal.  Sort any type of data.
Ex 3.  Sort the files in a given directory by filename.

5

% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSorter
{
   public static void main(String[] args)
   {
      File directory = new File(args[0]);
      File[] files = directory.listFiles();        
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)
         StdOut.println(files[i].getName());
   }
}

6

Callbacks

Goal.  Sort any type of data.

Q.  How can sort know to compare data of type String, Double, and File 
without any information about the type of an item?

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's compare function as needed.

Implementing callbacks.

• Java:  interfaces.

• C:  function pointers.

• C++:  class-type functors.

• ML:  first-class functions and functors.

Callbacks:  roadmap

7

sort implementation

client object implementation

import java.io.File;
public class FileSorter
{
   public static void main(String[] args)
   {
      File directory = new File(args[0]);
      File[] files = directory.listFiles();        
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)
         StdOut.println(files[i].getName());
   }
}

key point: no reference to File 

public static void sort(Comparable[] a)
{
   int N = a.length;
   for (int i = 0; i < N; i++)
      for (int j = i; j > 0; j--)
         if (a[j].compareTo(a[j-1]) < 0)
              exch(a, j, j-1);
         else break;
}

public class File
implements Comparable<File> 
{
   ...
   public int compareTo(File b)
   {
      ...
      return -1;
      ...
      return +1;
      ...
      return 0;
   }
}

interface

public interface Comparable<Item>
{
   public int compareTo(Item that);
}

built in to Java

8

Comparable interface API

Comparable interface.  Implement compareTo() so that v.compareTo(w):

• Returns a negative integer if v is less than w.

• Returns a positive integer if v is greater than w.

• Returns zero if v is equal to w.

• Throw an exception if incompatible types or either is null.

Required properties.  Must ensure a total order.

• Reflexive:  (v = v).

• Antisymmetric:  if (v < w) then (w > v); if (v = w) then (w = v).

• Transitive:  if (v ! w) and (w ! x) then (v ! x).

Built-in comparable types.  String, Double, Integer, Date, File, ...
User-defined comparable types.  Implement the Comparable interface.

public interface Comparable<Item>
{  public int compareTo(Item that);  }



Date data type.  Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
   private final int month, day, year;

   public Date(int m, int d, int y)
   {
      month = m; 
      day   = d;
      year  = y;
   }

   public int compareTo(Date that)
   {
      if (this.year  < that.year ) return -1;
      if (this.year  > that.year ) return +1;
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day   < that.day  ) return -1;
      if (this.day   > that.day  ) return +1;
      return 0;
   }
}

9

Implementing the Comparable interface:  example 1

only compare dates
to other dates

10

Implementing the Comparable interface:  example 2

Domain names.

• Subdomain:  bolle.cs.princeton.edu.

• Reverse subdomain:  edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category.
subdomains

reverse-sorted subdomains

public class Domain implements Comparable<Domain>
{
   private final String[] fields;
   private final int N;

   public Domain(String name)
   {
       fields = name.split("\\.");
       N = fields.length;
   }

   public int compareTo(Domain that)
   {
      for (int i = 0; i < Math.min(this.N, that.N); i++)
      {
         String s = fields[this.N - i - 1];
         String t = fields[that.N - i - 1];
         int cmp = s.compareTo(t);
         if      (cmp < 0) return -1;
         else if (cmp > 0) return +1;
      }
      return this.N - that.N;
   }
}

ee.princeton.edu
cs.princeton.edu
princeton.edu
cnn.com
google.com
apple.com
www.cs.princeton.edu
bolle.cs.princeton.edu

com.apple
com.cnn
com.google
edu.princeton
edu.princeton.cs
edu.princeton.cs.bolle
edu.princeton.cs.www
edu.princeton.ee

only use this trick
when no danger

of overflow

Helper functions.  Refer to data through compares and exchanges.

Less.  Is object v less than w ?

Exchange.  Swap object in array a[] at index i with the one at index j.

11

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{  return v.compareTo(w) < 0;  }

private static void exch(Comparable[] a, int i, int j)
{
   Comparable t = a[i];
   a[i] = a[j];
   a[j] = t;
}

Q.  How to test if an array is sorted?

Q.  If the sorting algorithm passes the test, did it correctly sort its input?
A.  Yes, if data accessed only through exch() and less().

12

Testing

private static boolean isSorted(Comparable[] a)
{
   for (int i = 1; i < a.length; i++)
      if (less(a[i], a[i-1])) return false;
   return true;
}



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

13 14

Selection sort

Algorithm.  ! scans from left to right.

Invariants.

• Elements to the left of ! (including !) fixed and in ascending order.

• No element to right of ! is smaller than any element to its left.

in final order
!

15

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right. 

• Identify index of minimum item on right.

• Exchange into position.

i++;

!

int min = i;
for (int j = i+1; j < N; j++)
   if (less(a[j], a[min]))
      min = j;            

!!

exch(a, i, min);
!!

in final order

in final order

in final order

16

Selection sort:  Java implementation

public class Selection {

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      for (int i = 0; i < N; i++)
      {
         int min = i;
         for (int j = i+1; j < N; j++)
            if (less(a[j], a[min]))
               min = j;
         exch(a, i, min);
      }
   }

   private static boolean less(Comparable v, Comparable w)
   {  /* as before */  }

   private static void exch(Comparable[] a, int i, int j)
   {  /* as before */  }
}



Selection sort:  mathematical analysis

Proposition A.  Selection sort uses  (N-1) + (N-2) +  ... + 1 + 0  ~  N2/2 
compares and N exchanges.

Running time insensitive to input.  Quadratic time, even if array is presorted.
Data movement is minimal.   Linear number of exchanges.

17

Trace of selection sort (array contents just after each exchange)

                       a[]
 i min   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 0   6   S  O  R  T  E  X  A  M  P  L  E 
 1   4   A  O  R  T  E  X  S  M  P  L  E 
 2  10   A  E  R  T  O  X  S  M  P  L  E 
 3   9   A  E  E  T  O  X  S  M  P  L  R 
 4   7   A  E  E  L  O  X  S  M  P  T  R 
 5   7   A  E  E  L  M  X  S  O  P  T  R 
 6   8   A  E  E  L  M  O  S  X  P  T  R 
 7  10   A  E  E  L  M  O  P  X  S  T  R 
 8   8   A  E  E  L  M  O  P  R  S  T  X 
 9   9   A  E  E  L  M  O  P  R  S  T  X 
10  10   A  E  E  L  M  O  P  R  S  T  X 

         A  E  E  L  M  O  P  R  S  T  X  

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort animations

18

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 random elements

Selection sort animations

19

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted elements

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

20



21

Insertion sort

Algorithm.  ! scans from left to right.

Invariants.

• Elements to the left of ! (including !) are in ascending order.

• Elements to the right of ! have not yet been seen.

in order ! not yet seen

22

Insertion sort inner loop

To maintain algorithm invariants:
 

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j = i; j > 0; j--)
   if (less(a[j], a[j-1]))
        exch(a, j, j-1);
   else break;

i++;

in order not yet seen

!

in order not yet seen

!!!!

Insertion sort: Java implementation

23

public class Insertion {

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      for (int i = 0; i < N; i++)
         for (int j = i; j > 0; j--)
            if (less(a[j], a[j-1]))
               exch(a, j, j-1);
            else break;
   }

   private static boolean less(Comparable v, Comparable w)
   {  /* as before */  }

   private static void exch(Comparable[] a, int i, int j)
   {  /* as before */  }
}

Proposition B.  To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ N2/4 compares and N2/4 exchanges on average.

Pf.  For randomly-ordered data, we expect each element to move halfway back.

Insertion sort:  mathematical analysis

24

Trace of insertion sort (array contents just after each insertion)

                       a[]
 i   j   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 1   0   O  S  R  T  E  X  A  M  P  L  E 
 2   1   O  R  S  T  E  X  A  M  P  L  E 
 3   3   O  R  S  T  E  X  A  M  P  L  E 
 4   0   E  O  R  S  T  X  A  M  P  L  E 
 5   5   E  O  R  S  T  X  A  M  P  L  E 
 6   0   A  E  O  R  S  T  X  M  P  L  E 
 7   2   A  E  M  O  R  S  T  X  P  L  E 
 8   4   A  E  M  O  P  R  S  T  X  L  E 
 9   2   A  E  L  M  O  P  R  S  T  X  E 
10   2   A  E  E  L  M  O  P  R  S  T  X  

         A  E  E  L  M  O  P  R  S  T  X  

entries in black
moved one position
right for insertion

entries in gray
do not move 

entry in red 
is a[j]



Insertion sort:  trace

25

Insertion sort animation

26

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random elements

Best case.  If the input is in ascending order, insertion sort makes
N-1 compares and 0 exchanges.

Worst case.  If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N2/2 exchanges.

Insertion sort:  best and worst case

27

 X T S R P O M L E E A 

 A E E L M O P R S T X 

Insertion sort animation

28

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted elements

in order
not yet seen

algorithm position



Def.  An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is O(N).

• Ex 1.  A small array appended to a large sorted array.

• Ex 2. An array with only a few elements out of place.

Proposition C.  For partially-sorted arrays, insertion sort runs in linear time.
Pf.  Number of exchanges equals the number of inversions.

Insertion sort: partially sorted inputs

29

 A E E L M O T R X P S 

T-R T-P T-S R-P X-P X-S
(6 inversions)

number of compares = exchanges + (N-1)

Insertion sort animation

30

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted elements

in order
not yet seen

algorithm position

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

31 32

Sorting challenge 0

Input.  Array of doubles.
Plot.  Data proportional to length.

Name the sorting method.

• Insertion sort.

• Selection sort.

black entries
are involved 
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort



33

Sorting challenge 1

Problem.  Sort a file of huge records with tiny keys.
Ex.  Reorganize your MP3 files.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

34

Sorting challenge 2

Problem.  Sort a huge randomly-ordered file of small records.
Ex.  Process transaction records for a phone company.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

35

Sorting challenge 3

Problem.  Sort a huge number of tiny files (each file is independent).
Ex.  Daily customer transaction records.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

36

Sorting challenge 4

Problem.  Sort a huge file that is already almost in order.
Ex.  Resort a huge database after a few changes.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ animations
‣ shellsort

37

Idea.  Move elements more than one position at a time by h-sorting the array.

Shellsort.  h-sort the array for a decreasing sequence of values of h.

Shellsort overview

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R
L           M           P           T  
   E           H           S           S  
      E           L           O           X 
         A           E           L           R

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E
P                                      S
   H                                      L
      E                                      E
         L                                       
            L                                 

h = 4

h = 13

An h-sorted !le is h interleaved sorted !les

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

A  E  E  E  H  L  L  L  M  O  P  R  S  S  T  X  

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R  

S  H  E  L  L  S  O  R  T  E  X  A  M  P  L  Einput

13-sort

4-sort

1-sort

an h-sorted array is h interleaved sorted subsequences

38

How to h-sort an array?  Insertion sort, with stride length h.

Why insertion sort?

• Big increments  "  small subarray.

• Small increments  "  nearly in order.  [stay tuned]

h-sorting

M  O  L  E  E  X  A  S  P  R  T 
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sorting an array

39

Shellsort example: increments 7, 3, 1

S  O  R  T  E  X  A  M  P  L  E

input

S  O  R  T  E  X  A  M  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  L  T  E  X  A  S  P  R  E
M  O  L  E  E  X  A  S  P  R  T

7-sort

M  O  L  E  E  X  A  S  P  R  T 
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sort

A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  R  S  X  T
A  E  E  L  M  O  P  R  S  T  X

1-sort

A  E  E  L  M  O  P  R  S  T  X

result

40



41

Shellsort:  intuition

Proposition.  A g-sorted array remains g-sorted after h-sorting it.
Pf.  Harder than you'd think!

M  O  R  T  E  X  A  S  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  L  T  E  X  A  S  P  R  E
M  O  L  E  E  X  A  S  P  R  T
M  O  L  E  E  X  A  S  P  R  T

7-sort

M  O  L  E  E  X  A  S  P  R  T
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T 
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sort

still 7-sorted

What increments to use?

1, 2, 4, 8, 16, 32 . . . 
No.

1, 3, 7, 15, 31, 63, . . .
Maybe.

1, 4, 13, 40, 121, 364, . . .
OK, easy to compute 3x+1 sequence.

1, 5, 19, 41, 109, 209, 505, . . .
Tough to beat in empirical studies.

Interested in learning more?

• See Algs 3 section 6.8 or Knuth volume 3 for details.

• Consider doing a JP on the topic.
42

public class Shell
{
   public static void sort(Comparable[] a)
   {
      int N = a.length;

      int h = 1;
      while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

      while (h >= 1)
      {  // h-sort the array.
         for (int i = h; i < N; i++)
         {
            for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
               exch(a, j, j-h);
         }
         
         h = h/3;
      }
   }

   private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
   private static boolean void(Comparable[] a, int i, int j)
   { /* as before */ }
}

Shellsort:  Java implementation

43

insertion sort

magic increment 
sequence

move to next
increment

Visual trace of shellsort

44Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result



Shellsort animation

45

h-sorted
current subsequence

algorithm position

50 random elements

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort animation

46

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted elements

h-sorted
current subsequence

algorithm position

other elements

Proposition.  The worst-case number of compares used by shellsort with the 
3x+1 increments is O(N3/2).

Property. The number of compares used by shellsort with the 3x+1 increments 
is at most by a small multiple of N times the # of increments used. 

Remark.  Accurate model has not yet been discovered (!)
47

Shellsort:  analysis

measured in thousands

N compares N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless array size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.

• Asymptotic growth rate?

• Best sequence of increments?

• Average case performance?

Lesson.  Some good algorithms are still waiting discovery.

48

open problem:  find a better increment sequence


