1.5 Case Study

- dynamic connectivity
- → quick find
- → quick union
- ▶ improvements
- → applications

$\label{eq:algorithms} \textit{Algorithms in Java, 4th Edition} \quad . \quad \textit{Robert Sedgewick and Kevin Wayne} \quad . \quad \textit{Copyright} @ 2009 \quad . \quad \textit{January 31, 2010 11:05:47 AM}$

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

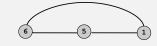
Given a set of objects

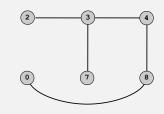
• Union: connect two objects.

, more difficult problem: find the path

• Find: is there a path connecting the two objects? 🗹

union(3,	4)	
union(8,	0)	
union(2,	3)	
union(5,	6)	
<pre>find(0,</pre>	2)	no
<pre>find(2,</pre>	4)	yes
union(5,	1)	
union(7,	3)	
union(1,	6)	
union(4,	8)	
<pre>find(0,</pre>	2)	yes
<pre>find(2,</pre>	4)	yes

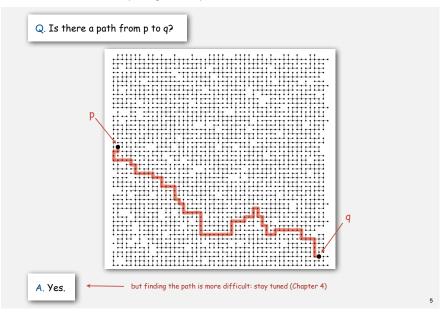




• dynamic connectivity

- quick find auick union
- improvements
- ▶ applications

Network connectivity: larger example



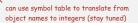
Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

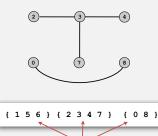
- Use integers as array index.
- Suppress details not relevant to union-find.



Modeling the connections

Transitivity. If p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

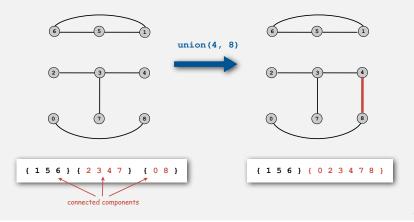


connected components

Implementing the operations

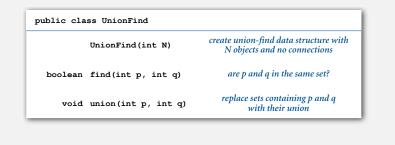
Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.



Union-find data type (API)

- Goal. Design efficient data structure for union-find.
- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.





Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: P and g are connected if they have the same id.

i 0 id[i] 0							5 and 6 are connected 2, 3, 4, and 9 are connected
٥	(1)		2)—	-3	 -4	
5	6)	(7	Ð	8		

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and q are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i]	0	1	9	9	9	6	6	7	8	9	2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6
3 and 6 not connected

Quick-find [eager approach]

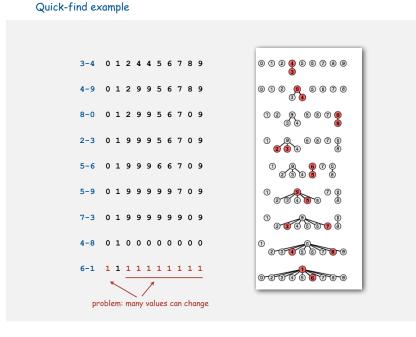
Data structure.

- Integer array ia[] of size N.
- Interpretation: p and q are connected if they have the same id.

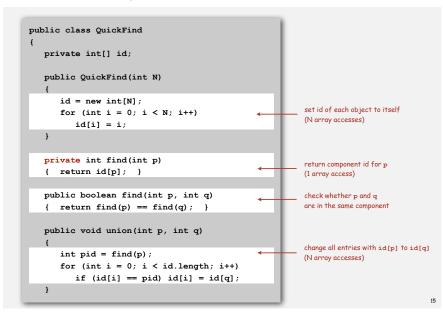
Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6
3 and 6 not connected

Union. To merge sets containing p and q, change all entries with id[p] to id[q].



Quick-find: Java implementation



Quick-find is too slow

Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

algorithm	union	find		
quick-find	Ν	1		

Ex. Takes N^2 array accesses to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

dynamic connectivity
quick find
quick union
improvements
applications

Quick-union [lazy approach]

Data structure.

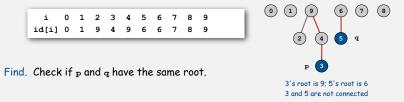
- Integer array id[] of size N.
- Root of i is id[id[id[...id[i]...]]].

a truism (roughly) since 1950 !

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N.
- Root of i is ia[ia[ia[...ia[i]...]]].



Quick-union [lazy approach]

Data structure. • Integer array id[] of size N. keep going until it doesn't change • Interpretation: ia[i] is parent of i. • Root of i is id[id[id[...id[i]...]]]. $\bigcirc 1 \bigcirc$ i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9 (2) p Find. Check if p and q have the same root. 3's root is 9; 5's root is 6 3 and 5 are not connected

6

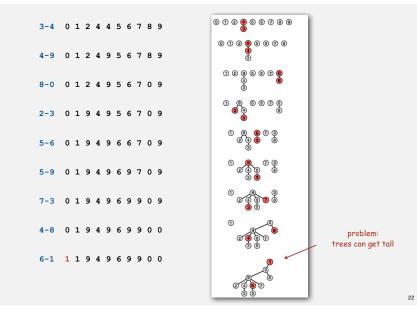
(0) (1)

p

7 8

7 8

Quick-union example



Quick-union: Java implementation

Union. To merge sets containing p and q,

set the id of p's root to the id of q's root.

i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 6

only one value changes

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N array accesses).

algorithm	union	find	1
quick-find	N	1	
quick-union	N†	N	← worst case

† includes cost of finding root

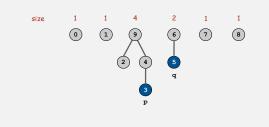
Improvement 1: weighting

Weighted quick-union.

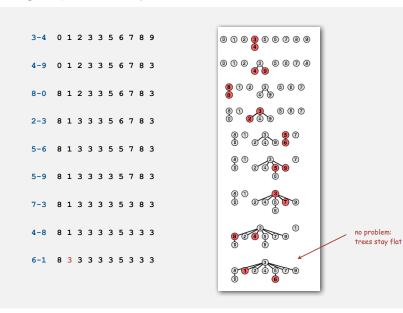
- Modify quick-union to avoid tall trees.
- Keep track of size of each set.
- Balance by linking small tree below large one.

Ex. Union of 3 and 5.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.



Weighted quick-union example



Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to guick-union.

return find(p) == find(q);

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

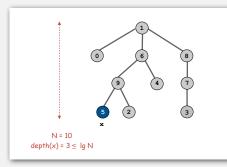
```
int i = find(p);
int j = find(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.



2

Weighted quick-union analysis

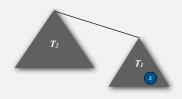
Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Pf. When does depth of x increase?

- Increases by 1 when tree T_1 containing x is merged into another tree T_2 .
- The size of the tree containing x at least doubles since $|\mathsf{T}_2| \geq |\mathsf{T}_1|.$
- Size of tree containing x can double at most Ig N times. Why?



Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

algorithm	union	find
quick-find	N	1
quick-union	N†	N
weighted QU	lg N †	lg N

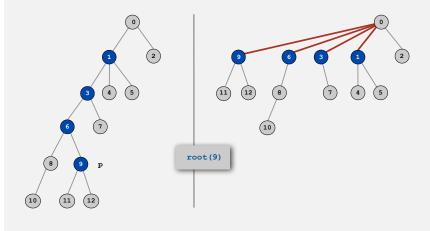
† includes cost of finding root

Q. Stop at guaranteed acceptable performance?

A. No, easy to improve further.

Improvement 2: path compression

Quick union with path compression. Just after computing the root of $_{\rm P},$ set the id of each examined node to point to that root.



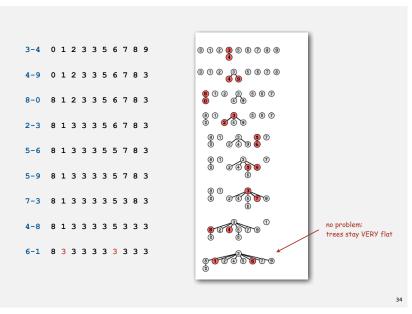
Path compression: Java implementation

Weighted quick-union with path compression example

Standard implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.



WQUPC performance

Proposition. [Tarjan 1975] Starting from an empty data structure, any sequence of M union and find ops on N objects takes O(N + M lg* N) time.

- Proof is very difficult.
- But the algorithm is still simple!

actually $O(N + M \alpha(M, N))$ See COS 423

Linear algorithm?

- · Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 ⁶⁵⁵³⁶	5

because lg* N is a constant in this universe

Amazing fact. No linear-time algorithm exists.

la* function number of times needed to take the lg of a number until reaching 1

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time		
quick-find	MN		
quick-union	MN		
weighted QU	N + M log N		
QU + path compression	N + M log N		
weighted QU + path compression	N + M lg* N		

M union-find operations on a set of N objects

Ex. [10⁹ unions and finds with 10⁹ objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

improvements

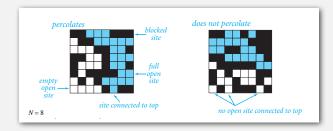
Union-find applications

- Percolation.
- Games (Go, Hex).
- \checkmark Network connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's bwlabel() function in image processing.

Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.



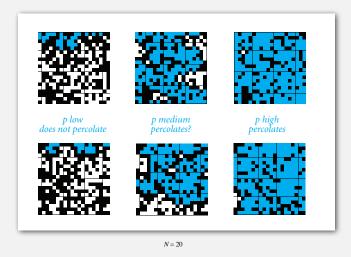
Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Depends on site vacancy probability p.

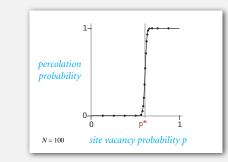


Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.

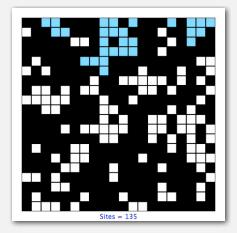
- p > p*: almost certainly percolates.
- p < p*: almost certainly does not percolate.

Q. What is the value of p*?



Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p*.

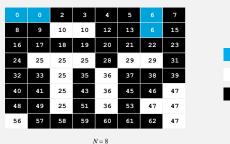


UF solution to find percolation threshold

How to check whether system percolates?

- Create an object for each site.
- Sites are in same set if connected by open sites.
- Percolates if any site in top row is in same set as any site in bottom row.

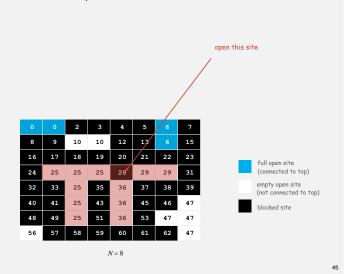
brute force algorithm needs to check $N^2\ pairs$



full open site (connected to top) empty open site (not connected to top) blocked site

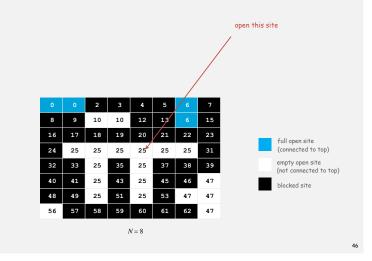
UF solution to find percolation threshold

Q. How to declare a new site open?



UF solution to find percolation threshold

- Q. How to declare a new site open?
- A. Take union of new site and all adjacent open sites.



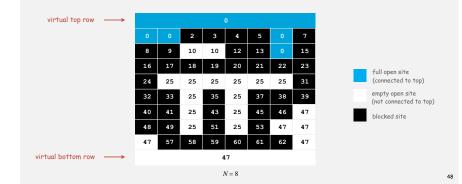
UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

- Q. How to avoid checking all pairs of top and bottom sites?
- A. Create a virtual top and bottom objects; system percolates when virtual top and bottom objects are in same set.

		2	3	4	5		7
8	9	10	10	12	13	6	15
16	17	18	19	20	21	22	23
24	25	25	25	25	25	25	31
32	33	25	35	25	37	38	39
40	41	25	43	25	45	46	47
48	49	25	51	25	53	47	47
56	57	58	59	60	61	62	47



Percolation threshold

- Q. What is percolation threshold p* ?
- A. About 0.592746 for large square lattices.

percolation constant known only via simulation percolation probability 0 0 0 0 0 0 0 593 1 site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

49

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.

50

• Iterate until satisfied.

The scientific method.

Mathematical analysis.