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Regression

• We have studied classification, the problem of automatically
categorizing data into a set of discrete classes.

• E.g., based on its words, is an email spam or ham?

• Regression is the problem of predicting a real-valued variable from
data input.
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Linear regression
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Data are a set of inputs and outputs D = {(xn, yn)}N
n=1
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Linear regression
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The goal is to predict y from x using a linear function.

D. Blei Linear Regression 4 / 65



Examples
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• Given today’s weather, how much will it rain tomorrow?

• Given today’s market, what will be the price of a stock tomorrow?

• Given her emails, how long will a user stay on a page?

• Others?

D. Blei Linear Regression 5 / 65



Linear regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−0
.5

0.
0

0.
5

1.
0

input

re
sp
on
se f(x) = β0 + βx

(xn, yn)

D. Blei Linear Regression 6 / 65



Multiple inputs

• Usually, we have a vector of inputs, each representing a different
feature of the data that might be predictive of the response.

x = 〈x1, x2, . . . , xp〉

• The response is assumed to be a linear function of the input

f (x) = β0 +

p∑
i=1

xiβi

• Here, β>x = 0 is a hyperplane.
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Multiple inputs

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .
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Flexibility of linear regression

• This set-up is less limiting than you might imagine.

• Inputs can be:

• Any features of the data
• Transformations of the original features, e.g.,

x2 = log x1 or x2 =
√

x1.
• A basis expansion, e.g., x2 = x2

1 and x3 = x3
1

• Indicators of qualitative inputs, e.g., category
• Interactions between inputs, e.g., x1 = x2x3

• Its simplicity and flexibility make linear regression one of the most
important and widely used statistical prediction techniques.
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Polynomial regression example
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Linear regression
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f (x) = β0 + βx
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Polynomial regression
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f (x) = β0 + β1x + β2x
2 + β3x

3
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Fitting a regression

• Given data D = {(xn, yn)}N
n=1,

find the coefficient β that can
predict ynew from xnew.

• Simplifications:

• 0-intercept, i.e., β0 = 0
• One input, i.e., p = 1

• How should we proceed?

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

x

y

D. Blei Linear Regression 13 / 65



Residual sum of squares
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|(yn − βxn)|

A reasonable approach is to minimize sum of the squared Euclidean
distance between each prediction βxn and the truth yn

RSS(β) =
1

2

N∑
n=1

(yn − βxn)
2
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RSS for two inputs

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .
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Optimizing β

The objective function is

RSS(β) =
1

2

N∑
n=1

(yn − βxn)
2

The derivative is

d

dβ
RSS(β) = −

N∑
n=1

(yn − βxn)xn

The optimal value is

β̂ =

∑N
n=1 ynxn∑

n x2
n
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The optimal β

• The optimal value is

β̂ =

∑N
n=1 ynxn∑

n x2
n

• + values pull the slope up.

• − values pull the slope down
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Prediction

• After finding the optimal β, we
would like to predict a new
output from a new input.

• We use the point on the line at
the input,

ŷnew = β̂xnew
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Prediction

• Note the difference between
classification and prediction.

• Note that linear regression
assumes the input is always
observed.
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Multiple inputs

In general,

y = β0 +

p∑
i=1

βixi

To simplify, let β be a p + 1 vector and set xp+1 = 1. Now the RSS is

RSS(β) =
1

2

N∑
n=1

(yn − β>xn)
2

(Note that βp+1 is β0 in the old notation.)
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Multiple inputs

The objective is:

RSS(β) =
1

2

N∑
n=1

(yn − β>xn)
2

The derivative with respect to βi is:

d

dβi
= −

N∑
n=1

(yn − βixn,i )xn,i

As a vector, the gradient is:

5βRSS = −
N∑

n=1

(yn − β>xn)xn

One option : optimize with some kind of gradient-based algorithm.
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The normal equations

The design matrix is an N × (p + 1) matrix:

X =


x1,1 x1,2 . . . x1,p 1
x2,1 x2,2 . . . x2,p 1

...
xN,1 xN,2 . . . xN,p 1


The response vector is an N-vector:

y = 〈y1, y2, . . . , yN〉

Recall that the parameter vector is a (p + 1)-vector

β = 〈β1, β2, . . . , βp+1〉
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The normal equations

With these definitions, the gradient of the RSS is

5βRSS = −X>(y − Xβ)

Setting to the 0-vector and solving for β:

X>y − X>X β̂ = 0

X>X β̂ = X>y

β̂ = (X>X )−1X>y

This works as long as X>X is invertible, i.e., X is full rank.
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Probabilistic interpretation
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• Our reasoning so far has not
included any probabilities

• It is no surprise that linear
regression has a probabilistic
interpretation

• What do you think that it is?
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Probabilistic interpretation

Xn Yn β
N

• Linear regression assumes that the output are drawn from a Normal
distribution whose mean is a linear function of the coefficients and
the input,

Yn | xn, β ∼ N (β · xn, σ
2)

• This is like putting a Gaussian “bump” around the mean, which is a
linear function of the input.

• Note that this is a conditional model. The inputs are not modeled.
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Conditional maximum likelihood

We find the parameter vector β that maximizes the conditional
likelihood. The conditional log likelihood of data D = {(xn, yn)}N

n=1 is

L(β) = log
N∏

n=1

p(yn | xn, β)

= log
N∏

n=1

1√
2πσ2

exp

{
−(yn − β>xn)

2

2σ2

}

=
N∑

n=1

−1

2
log 2πσ2 − 1

2
(yn − β>xn)

2/σ2

Question: What happens when we optimize with respect to β?
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Conditional maximum likelihood

Maximizing the conditional log likelihood with respect to β,

L(β) =
N∑

n=1

−1

2
log 2πσ2 − 1

2
(yn − β>xn)

2/σ2

is the same as minimizing the residual sum of squares

RSS(β) =
1

2
(yn − β>xn)

2

The maximum likelihood estimates are identical to the estimates we
obtained earlier.

Question: What is the probabilistic interpretation of prediction?
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Probabilistic prediction

• In prediction, we estimate the
conditional expectation:

E[ynew | xnew] = β>xnew

• This is identical to the
geometric treatment.

• Note: the variance term σ2

does not play a role in
estimation or prediction.

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .
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“Real-world” example
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“Real-world” example
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Important aside

• A pervasive concept in machine learning and statistics is the bias
variance trade-off.

• Consider a random data set that is drawn from a linear regression
model,

Yn | xn, β ∼ N (βxn, σ
2).

• We can contemplate the maximum likelihood estimate β̂ as a
random variable whose distribution is governed by the distribution of
the data set D = {(xn, yn)}N

n=1.
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Bias variance decomposition

Suppose we observe a new data input x , we can consider the mean
squared error of our estimate of E[y | x ] = β̂x .

MSE(β̂x) = ED[(β̂x − βx)2]

Note that β is not random and β̂ is random.

MSE = E[(β̂x)2]− 2E[β̂x ]βx + (βx)2

= E[(β̂x)2]− 2E[(β̂x)](βx) + (βx)2 + E[(β̂x)]2 − E[(β̂x)]2

=
(
E[(β̂x)2 − E[β̂x ]2

)
+
(
E[β̂x ]− βx

)2
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Bias variance decomposition

MSE =
(
E[(β̂x)2]− E[β̂x ]2

)
+
(
E[β̂x ]− βx

)2

• The second term is the squared bias,

bias = E[β̂x ]− βx

An estimate for which this term is zero is an unbiased estimate.

• The first term is the variance,

variance = E[(β̂x)2]− E[β̂x ]2

This reflects how sensitive the estimate is to the randomness
inherent in the data.
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Bias variance and prediction error

What about prediction error, which is what we ultimately care about?
Suppose we see a new input x . The expected squared prediction error is

ED[EY [(β̂x − Y )2]]

The first expectation is taken for the randomness of β̂. The second is
taken for the randomness of Y given x .

ED[EY [(β̂x − Y )2]] = Var(Y ) + MSE(β̂x)

= σ2 + Bias2(β̂x) + Var(β̂x)

The first term is the inherent uncertainty around the true mean; the
second two terms are the bias variance decomposition of the estimator.
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Gauss-Markov theorem

MSE =
(
E[(β̂x)2]− E[β̂x ]2

)
+
(
E[β̂x ]− βx

)2

The Gauss-Markov theorem states that the MLE/least squares estimate
of β is the unbiased estimate with smallest variance.

D. Blei Linear Regression 35 / 65



Bias variance trade-off
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• Classical statistics focuses on unbiased estimates.

• Modern statistics has explored the trade-off.

• We might sacrifice a little bias for a larger reduction in variance.
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RegularizationElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• In regression, we can make this trade-off with regularization, which
means placing constraints on the coefficients β.

• Intuitively, this reduces the variance because it limits the space that
the parameter vector β can live in.

• If the true MLE of β lives outside that space, then the resulting
estimate must be biased because of the Gauss-Markov theorem.
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RegularizationElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• Regularization encourages smaller and simpler models.

• Intuitively, simpler models are more robust to overfitting,
generalizing pooly because of a close match to the training data.

• Simpler models can also be more interpretable, which is another
goal of regression.
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Ridge regression
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• In ridge regression, we optimize the RSS subject to a constraint on
the sum of squares of the coefficients,

minimize
∑N

n=1
1
2(yn − βxn)

2

subject to
∑p

i=1 β2
i ≤ s

• This constrains the coefficients to live within a sphere of radius s.
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Ridge regression

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• What happens as s increases?
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Ridge regression

• The ridge regression estimate can also be expressed as

β̂ridge = arg min
β

N∑
n=1

1

2
(yn − βxn)

2 + λ

p∑
i=1

β2
i

• This problem is convex.

• If the covariates are uncorrelated, it has an analytic solution.
(You’ll see this on your homework.)
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Ridge regression

β̂ridge = arg min
β

N∑
n=1

1

2
(yn − βxn)

2 + λ

p∑
i=1

β2
i

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• There is a 1-1 mapping between s and λ.

• λ is the complexity parameter

• It determines the radius of the sphere

• Trades off an increase in bias for a decrease
in variance
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Prostate cancer data

• Study from Stamey et al. (1989)

• Examined the correlation between the level of prostate-specific
antigen and a number of clinical measures in mean about to receive
a procedure

• Variables are

• log cancer volume
• log prostate weight
• age
• log of the amount of benign prostatic hyperplasia
• seminal besicle invasion
• log of capsular penetration
• Gleason score
• percent of Gleason scores 4 or 5
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Coefficients as a function of λ
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.7: Profiles of ridge coefficients for the

prostate cancer example, as tuning parameter λ is var-

ied. Coefficients are plotted versus df(λ), the effec-

tive degrees of freedom. A vertical line is drawn at

df = 4.16, the value chosen by cross-validation.

How can we choose λ?
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Choosing λElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• The choice of complexity parameter greatly
affects our estimate

• What would happen if we used training
error as the criterion?

• In practice, λ is chosen by cross validation.

• This is an attempt to minimize test error.
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Cross-validation to choose the complexity parameter

• Divide the data into 10 folds

• Decide on candidate values of λ (e.g., a grid between 0 and 1)

• For each fold and value of λ,

• Estimate β̂ridge on the out-of-fold samples.
• For each within-fold sample xn, compute its squared error

εn = (ŷn − yn)
2

• The score for that value of λ is

MSE(λ) =
1

N

N∑
n=1

εn

• Choose the value of λ that minimizes this score.
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Cross-validation to choose the complexity parameter

• The score for that value of λ is

MSE(λ) =
1

N

N∑
n=1

εn

• Choose the value of λ that minimizes this value.

• Notice that each εn was computed from a model that did not
include the nth data point in its fit.

• Thus, MSE (λ) is an estimate of test error.

• Dave, draw a picture on the board.
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Aside: Bayesian statistics

• In Bayesian statistics, we treat the parameter as a random variable.

• In the model, it is endowed with a prior distribution.

• Rather than estimate the parameter, we perform posterior inference.

• In general,

θ ∼ G0(α)

yn ∼ F (θ)

and posterior inference is concerned with

p(θ | y1, . . . , yN , α)

• The parameter to the prior α is called a hyperparameter.
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Aside: Bayesian statistics

There are two usual ways of using the posterior to obtain an estimate

• Maximum a posteriori estimates

θMAP = arg max
θ

p(θ | y1, . . . , yN , α)

• Posterior mean estimate

θmean = E[θ | y1, . . . , yN , α]

• Why are these different from the MLE?
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Ridge regression

Xn Yn β
N

λ

Ridge regression corresponds to MAP estimation in the following model:

βi ∼ N (0, 1/λ)

Yn | xn, β ∼ N (β>xn, σ
2)
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Bayesian interpretation of ridge regression

Note that

p(βi |λ) =
1√

2π(1/λ)
exp{λβ2

i }

Let’s compute the MAP estimate of β:

max
β

p(β | y1:N , x1:N , λ) = max
β

log p(β | y1:N , x1:N , λ)

= max
β

log p(β, y1:N | x1:N , λ)

= max
β

log

(
p(y1:N | x1:N , β)

p∏
i=1

p(βi |λ)

)

= max
β

−RSS(β; y1:N , x1:N)−
p∑

i=1

λβ2
i
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Bayesian intuitions

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• The hyperparameter controls how far away
the estimate will be from the MLE

• A small hyperparameter (large variance) will
choose the MLE, i.e., the data totally
determine the estimate

• As the hyperparameter gets larger, the
estimate moves further from the MLE. The
prior (E[β] = 0) becomes more influential.

• A theme in Bayesian estimation: Both the
data and the prior influence the answer.
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Summary of ridge regression

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• We constrain β to be in a hypersphere
around 0.

• This is equivalent to minimizing the RSS
plus a regularization term.

• We no longer find the β̂ that minimizes the
RSS. (Contours illustrate constant RSS.)

• Also called shrinkage, because we are
reducing the components to be close to 0
and close to each other

• Ridge estimates trade off bias for variance.
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The lasso
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

!
^

!
^2

. .!

1

! 2

!
1

!

Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• A related regularization method is called the lasso.

• We optimize the RSS subject to a different constraint.

minimize
∑N

n=1
1
2(yn − βxn)

2

subject to
∑p

i=1 |βi | ≤ s

• This small change yields very different estimates.
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Lasso
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• What happens as s increases?

• Where is the solution going to lie?
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Lasso
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• It’s a fact: unless it chooses β̂, the lasso will
set some of the coefficients to exactly zero.

• This is a form of feature selection,
identifying a relevant subset of our inputs to
perform prediction.

• Trades off an increase in bias with a
decrease in variance

• And, provides interpretable (sparse) models
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Lasso

• The lasso is equivalent to

β̂lasso = arg min
β

N∑
n=1

1

2
(yn − βxn)

2 + λ

p∑
i=1

|βi |

• Again, there is a 1-1 mapping between λ and s

• This objective is still convex!
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Why the lasso is exciting

β̂lasso = arg min
β

N∑
n=1

1

2
(yn − βxn)

2 + λ

p∑
i=1

|βi |

• Prior to the lasso, the only “sparse” method was subset selection,
finding the best subset of features with which to model the data

• But, searching over all subsets is very computationally expensive

• The lasso efficiently finds a sparse solution with convex optimization.

• This is akin to a “smooth version” of subset selection.

• Note: the lasso won’t consider all possible subsets.
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Optimizing λ
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.9: Profiles of lasso coefficients, as tuning

parameter t is varied. Coefficients are plotted versus

s = t/
∑p

1 |β̂j |. A vertical line is drawn at s = 0.5, the

value chosen by cross-validation. Compare Figure 3.7

on page 7; the lasso profiles hit zero, while those for

ridge do not.

As we increase s (decrease λ), coefficients become non-zero.
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Choosing λ with LARS
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.9: Profiles of lasso coefficients, as tuning

parameter t is varied. Coefficients are plotted versus

s = t/
∑p

1 |β̂j |. A vertical line is drawn at s = 0.5, the

value chosen by cross-validation. Compare Figure 3.7

on page 7; the lasso profiles hit zero, while those for

ridge do not.

• Again, we choose the complexity parameter λ with cross-validation.

• The LARS algorithm (Efron et al., 2004) lets us efficiently explore
the entire regularization path of λ.
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Bayesian interpretation of the lasso

Xn Yn β
N

λ

Lasso regression corresponds to MAP estimation in the following model:

βi ∼ Laplace(λ)

Yn | xn, β ∼ N (β>xn, σ
2)

Where the coefficients come from a Laplace distribution

p(βi |λ) =
1

2
exp{−λ|βi |}
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Generalized regularization

• In general, regularization can be seen as minimizing the RSS with a
constraint on a q-norm,

minimize
∑N

n=1
1
2(yn − βxn)

2

subject to ||β||q ≤ s

• The methods we discussed so far:

• q = 2 : ridge regression
• q = 1 : lasso
• q = 0 : subset selection
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Generalized regularization

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

Figure 3.13: Contours of constant value of
∑

j |βj |q

for given values of q.
• This brings us away from the minimum RSS solution, but might

provide better test prediction via the bias/variance trade-off.

• Complex models have less bias; simpler models have less variance.
Regularization encourages simpler models.
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Generalized regularization

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

Figure 3.13: Contours of constant value of
∑

j |βj |q

for given values of q.
• Each of these methods correspond to a Bayesian solution with a

different choice of prior.

β̂ridge = arg min
β

N∑
n=1

1

2
(yn − βxn)

2 + λ||β||q

• The complexity parameter λ can be chosen with cross validation.

• Lasso (q = 1) is the only norm that provides sparsity and convexity.
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Regularization comparison
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