
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

3.5 Applications

2

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

Sorting Applications

Applications.
! Sort a list of names.

! Organize an MP3 library.

! Display Google PageRank results.

! List RSS news items in reverse chronological order.

! Find the median.

! Find the closest pair.

! Binary search in a database.

! Identify statistical outliers.

! Find duplicates in a mailing list.

! Data compression.

! Computer graphics.

! Computational biology.

! Supply chain management.

! Book recommendations on Amazon.

! Load balancing on a parallel computer.

. . .

3

Engineering a System Sort

Bentley-McIlroy. [Engineeering a Sort Function]

! Original motivation: improve qsort function in C.

! Basic algorithm = 3-way quicksort with cutoff to insertion sort..

! Partition on Tukey's ninther: Approximate median-of-9.

– used median-of-3 elements, each of which is median-of-3

– idea borrowed from statistics, useful in many disciplines

R A M G X QK B E

A MR X KG Q EB

K EM

K ninther

medians

groups of 3

nine evenly spaced elements

4

Java System Sorts

Java's system sort.

! Can sort array of type Comparable or any primitive type.

! Uses Bentley-McIlroy quicksort for primitive types.

! Uses mergesort for objects.

Q. Why difference between objects and primitive types?

import java.util.Arrays;

public class IntegerSort {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 int[] a = new int[N];

 for (int i = 0; i < N; i++)

 a[i] = StdIn.readInt();

 Arrays.sort(a);

 for (int i = 0; i < N; i++)

 System.out.println(a[i]);

 }

}

5

Breaking Java's System Sort

Is it possible to make system sort go quadratic?

! No, for mergesort.

! Yes, for deterministic quicksort.

McIlroy's devious idea. [A Killer Adversary for Quicksort]

! Construct malicious input while running system quicksort in response

to elements compared.

! If p is pivot, commit to (x < p) and (y < p), but don't commit to

(x < y) or (x > y) until x and y are compared.

Consequences.

! Confirms theoretical possibility.

! Algorithmic complexity attack: you enter linear amount of data;

server performs quadratic amount of work.

so, why are most system implementations of
quicksort deterministic?

6

Breaking Java's System Sort

A killer input. Blows function call stack in Java and crashes program.

% more 250000.txt

0

218750

222662

11

166672

247070

83339

156253

...

% java IntegerSort < 250000.txt

Exception in thread "main"

java.lang.StackOverflowError

 at java.util.Arrays.sort1(Arrays.java:562)

 at java.util.Arrays.sort1(Arrays.java:606)

 at java.util.Arrays.sort1(Arrays.java:608)

 at java.util.Arrays.sort1(Arrays.java:608)

 at java.util.Arrays.sort1(Arrays.java:608)

 . . .

Java's sorting library crashes, even if
you give it as much stack space as Windows allows.

250,000 integers between
0 and 250,000

more disastrous possibilities in C

7

Natural Order

public class Date implements Comparable<Date> {

 private int month, day, year;

 public Date(int m, int d, int y) {

 month = m;

 day = d;

 year = y;

 }

 public int compareTo(Date b) {

 Date a = this;

 if (a.year < b.year) return -1;

 if (a.year > b.year) return +1;

 if (a.month < b.month) return -1;

 if (a.month > b.month) return +1;

 if (a.day < b.day) return -1;

 if (a.day > b.day) return +1;

 return 0;

 }

}

only compare dates
to other dates

8

Sorting Different Types of Data

Goal. Sort objects with no natural order or with a different orders.

Ex. Sort strings by:

! Natural order. Now is the time

! Case insensitive. is Now the time

! French. real réal rico

! Spanish. café cuidado champiñón dulce

String[] a;

...

Arrays.sort(a);

Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);

Arrays.sort(a, Collator.getInstance(Locale.FRENCH));

Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

ch and rr are single letters

import java.text.Collator;

9

Comparator

Comparator interface. Class promises to implement a method compare

so that compare(v, w) is a total order and behaves like compareTo.

Advantage. Separates the definition of the data type from what it

means to compare two objects of that type.

! Add a new order to a data type.

! Add an order to a library data type with no natural order.

public class ReverseOrder implements Comparator<String> {

 public int compare(String a, String b) {

 return -a.compareTo(b);

 }

}

Arrays.sort(a, new ReverseOrder());

10

Insertion Sort: Comparator Version

Sorting library. Easy modification to support comparators.

public static void sort(Object[] a, Comparator comparator) {

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (less(comparator, a[j], a[j-1])) exch(a, j, j-1);

 else break;

}

private static boolean less(Comparator c, Object v, Object w) {

 return c.compare(v, w) < 0;

}

private static void exch(Object[] a, int i, int j) {

 Object t = a[i]; a[i] = a[j]; a[j] = t;

}
insertion sort

11

Sorting By Different Fields

Design challenge: enable sorting students by name or by section.

Arrays.sort(students, Student.BY_NAME);

Arrays.sort(students, Student.BY_SECT);

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name then sort by section

12

Sorting By Different Fields

import java.util.Arrays;

public class Student {

 private String name;

 private int section;

 public static final Comparator<Student> BY_NAME = new ByName();

 public static final Comparator<Student> BY_SECT = new BySect();

 ...

 private static class ByName implements Comparator<Student> {

 public int compare(Student a, Student b) {

 return a.name.compareTo(b.name);

 }

 }

 private static class BySect implements Comparator<Student> {

 public int compare(Student a, Student b) {

 return a.section - b.section;

 }

 }

}

13

Stability

A stable sort preserves the relative order of records with equal keys.

@#%&@!! Students in section 3 no longer in order by name.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name then sort by section

14

Stability

Q. Which sorts are stable?

! Selection sort.

! Insertion sort.

! Quicksort.

! Mergesort.

Annoying fact. Many useful sorting algorithms are unstable.

15

Lots of Sorting Algorithms

Internal sorts.

! Insertion sort, selection sort, bubblesort, shaker sort.

! Quicksort, mergesort, heapsort, samplesort, introsort, shellsort.

! Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts.

! Distribution, MSD, LSD.

! 3-way radix quicksort.

Parallel sorts.

! Bitonic sort, Batcher even-odd sort.

! Smooth sort, cube sort, column sort.

! GPUsort.

16

Lots of Sorting Attributes

Q. Isn't the system sort good enough.

A. Maybe.

! Stable?

! Multiple keys?

! Deterministic?

! Keys all distinct?

! Multiple key types?

! Linked list or arrays?

! Large or small records?

! Is your file randomly ordered?

! Need guaranteed performance?

A. An elementary sorting algorithm may be the method of choice.

A. Use well understood topic to study basic issues.

many more combinations of
attributes than algorithms

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

3.6 Complexity

18

Computational Complexity

Computational complexity. Framework to study efficiency of

algorithms for solving a particular problem X.

Machine model. Count fundamental operations.

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of any algorithm for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Ex: sorting.

! Machine model = # comparisons in decision tree.

! Upper bound = N log2 N from mergesort.

! Lower bound = N log2 N - N log2 e.

! Optimal algorithm = mergesort.

lower bound " upper bound

access information only through compares

19

Decision Tree

print
a1, a2, a3

a2 < a3

yes no

a2 < a3

yes no

a1 < a3

yes no

a1 < a3

yes no

print
a1, a3, a2

print
a3, a1, a2

print
a2, a1, a3

print
a2, a3, a1

print
a3, a2, a1

a1 < a2

yes no

code between comparisons
(e.g., sequence of exchanges)

20

Comparison Based Sorting Lower Bound

Theorem. Any comparison based sorting algorithm must use

!(N log2 N) comparisons.

Pf.

! Suffices to establish lower bound when input consists of N distinct

values a1 through aN.

! Worst case dictated by tree height h.

! N ! different orderings.

! (At least) one leaf corresponds to each ordering.

! Binary tree with N ! leaves must have height

!

h " log2(N!)

" log2(N /e)
N

= N log2 N # N log2 e

Stirling's formula

21

Comparison Based Sorting Lower Bound

Q. What if we have information about the keys to be sorted or their

initial arrangement?

Partially ordered arrays. Depending on the initial order of the input,

we may not need N log N compares.

Duplicate keys. Depending on the input distribution of duplicates, we

may not need N log N compares.

Digital property of keys. We can use digit/character comparisons

instead of key comparisons for numbers and strings.

insertion sort requires O(N) compares on
an already sorted array

3-way quicksort requires O(N) compares
if there are only 17 distinct keys

stay tuned for radix sort

