
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

4.4 Balanced Trees

Reference: Chapter 13, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Symbol Table Review

Symbol table: key-value pair abstraction.

! Insert a value with specified key.

! Search for value given key.

! Delete value with given key.

Randomized BST.

! O(log N) time per op.

! Store subtree count in each node.

! Generate random numbers for each insert/delete op.

This lecture.

! Splay trees.

! 2-3-4 trees.

! Red-black trees.

! B-trees.

unless you get ridiculously unlucky

3

2-3-4 Trees

2-3-4 tree.

! Scheme to keep tree balanced.

! Generalize node to allow multiple keys.

Allow 1, 2, or 3 keys per node.

! 2-node: one key, two children.

! 3-node: two keys, three children.

! 4-node: three keys, four children.

H I N

F R

UA C E

k ! F F ! k ! R R ! k

4

2-3-4 Trees: Search and Insert

Search.

! Compare search key against keys in node.

! Find interval containing search key.

! Follow associated link (recursively).

Insert.

! Search to bottom for key.

! 2-node at bottom: convert to 3-node.

! 3-node at bottom: convert to 4-node.

! 4-node at bottom: ??

H I N

F R

UA C E

k ! F F ! k ! R R ! k

5

2-3-4 Trees: Splitting Four Nodes

Transform tree on the way down.

! Ensures last node is not a 4-node.

! Local transformation to split 4-nodes:

Invariant: current node is not a 4-node.

! One of two above transformations must apply at next node.

! Insertion at bottom is easy since it's not a 4-node.

6

2-3-4 Trees: Splitting a Four Node

Splitting a four node: move middle key up.

A-C

K Q W

D

E-J L-P R-V X-Z

A-C

K

D Q

E-J L-P R-V X-Z

W

7

2-3-4 Trees

Tree grows up from the bottom.

E

A

P

E

X

M

L

8

Balance in 2-3-4 Trees

Property. All paths from top to bottom have exactly the same length.

Tree height.

! Worst case: lg N [all 2-nodes]

! Best case: log4 N = 1/2 lg N [all 4-nodes]

! Between 10 and 20 for a million nodes.

! Between 15 and 30 for a billion nodes.

Note. Comparison within nodes not accounted for.

9

2-3-4 Trees: Implementation?

Direct implementation complicated because of:

! Maintaining multiple node types.

! Implementation of getChild.

! Large number of cases for split.

private Node insert(Node h, Key key, Value val) {

 Node x = h;

 while (x != null) {

 x = x.getChild(key);

 if (x.is4Node()) x.split();

 }

 if (x.is2Node()) x.make3Node(key, val);

 else if (x.is3Node()) x.make4Node(key, val);

}

fantasy code

10

Red-Black Trees

Represent 2-3-4 trees as binary trees.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

! Not 1-1 because 3-nodes swing either way.

red

11

Splitting Nodes in Red-Black Trees

Two easy cases: switch colors.

Two hard cases: use rotations.

do single rotation

do double rotation

12

Red-Black Tree Node Split Example

right rotate R "

left rotate E "

change colors

inserting G

13

Red-Black Tree Construction

E

A

P

E

X

M

L

14

Balance in Red-Black Trees

Property. Length of longest path is at most twice the length of

shortest path.

Tree height. Worst case: 2 lg N.

Note. Comparison within nodes are counted.

15

Symbol Table: Implementations Cost Summary

* assumes hash map is random for all keys
† N is the number of nodes ever inserted
‡ probabilistic guarantee
§ amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

16

Red-Black Trees in Practice

Red-black trees vs. splay trees.

! Fewer rotations than splay trees.

! One extra bit per node for color.

Red-black trees vs. hashing.

! Hashing code is simpler and usually faster:

arithmetic to compute hash vs. comparison.

! Hashing performance guarantee is weaker.

! BSTs have more flexibility and can support wider range of ops.

Red-black trees are widely used as system symbol tables.

! Java: TreeMap, TreeSet.

! C++ STL: map, multimap, multiset.

possible to eliminate

at most 2 per insertion

17

Red Black Tree: Java Library

Java has built-in libraries for symbol tables.

! TreeMap = red black tree implementation.

Duplicate policy.

! Java HashMap allows null values.

! Our implementations forbid null values.

import java.util.TreeMap;

public class TreeMapDemo {

 public static void main(String[] args) {

 TreeMap<String, String> st = new TreeMap <String, String>();

 st.put("www.cs.princeton.edu", "128.112.136.11");

 st.put("www.princeton.edu", "128.112.128.15");

 System.out.println(st.get("www.cs.princeton.edu"));

 }

}

18

B-Trees

B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.

! Reading a page into memory from disk is expensive.

! Accessing info on a page in memory is free.

! Goal: minimize # page accesses.

! Node size M = page size.

Space-time tradeoff.

! M large # only a few levels in tree.

! M small # less wasted space.

! Typical M = 1000, N < 1 trillion.

Bottom line: number of page accesses is logMN per op.

! 3 or 4 in practice!

19

B-Tree Example

M = 5

Page

Key = Value = int

insert 275

20

B-Tree Example (cont)

21

Symbol Table: Implementations Cost Summary

B-Tree: Number of PAGE accesses is logMN per op.

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

N

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N / 2

Insert

N

log N †

log N

log N §

N / 2

Delete

N

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

N

N

log N ‡

log N §

log N

B-Tree 1 1 1 1 11

page accesses

Hashing N 1 1* 1* 1*N

22

B-Trees in the Wild

File systems.

! Windows: HPFS.

! Mac: HFS, HFS+.

! Linux: ReiserFS, XFS, Ext3FS, JFS.

Databases.

! Most common index type in modern databases.

! ORACLE, DB2, INGRES, SQL, PostgreSQL, . . .

Variants.

! B trees: Bayer-McCreight (1972, Boeing)

! B+ trees: all data in external nodes.

! B* trees: keeps pages at least 2/3 full.

! R-trees for spatial searching: GIS, VLSI.

journaling

23

Summary

Goal: ST implementation with log N guarantee for all ops.

! Probabilistic: randomized BST.

! Amortized: splay tree.

! Worst-case: red-black tree.

! Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

! B-tree.

