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1. A discussion of this problem as well as a generalizations to matroids can be found in H. Gabow and R. Tarjan, “Efficient algorithms for a family of matroid intersection problems,” J. Algorithms 5 (1984), pp.80-131.

Here is a key lemma.

Lemma: Let T1and T2 two spanning trees. For any edge 
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are spanning trees.

Proof: Let p be the path in T2  joining the ends of e.  Adding e to T2 and deleting any edge on p produces a tree. Delete e from T1.  This breaks T1 into two pieces. Some edge on p connects the two pieces. This edge, f, satisfies the lemma.

For ease of description, let us color the edges incident to r red and all other edges green. For convenience, I will assume that 
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 is connected and that all trees have distinct total edge costs. We can remove the first restriction by either adding dummy edges to 
[image: image6.wmf]G

 of very high weight, or dealing explicitly with the connected components of 
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.  We can deal with the second restriction by breaking ties lexicographically using an ordering on the edges. With these restrictions there is a unique minimum k-tree for each k not exceeding d, the degree of r. Let us denote these minimum trees by T1,T2…Td.

Let e be a red edge in 
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 Let 
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be an edge that satisfies Lemma 1 for Tk+1 and Tk. Suppose f is red. By Lemma 1, 
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is a 
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 Since Tk+1 is a minimum 
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 Similarly, 
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is a k-tree, and 
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 This means 
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 which contradicts our assumption about uniqueness of minimum k-trees. Thus f is green. Thus 
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is a k-tree and 
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 is a (k+1) tree. This implies 
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or, equivalently, 
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 which means that 
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since Tk+1 is (uniquely) minimum, and 
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Thus we can get from Tk to Tk+1 or back by the single cheapest swap.

Tree T1 consists of a single red edge and a minimum spanning tree T of 
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. Since T2,…Td are obtained from T1 by successively adding a red edge and deleting a green edge, each of T1,…,Td contains only edges in T and edges incident to r. Hence we can restrict our attention to this set of at most 2n-2 edges, which can be found in one minimum spanning tree computation.

We could start with T1 and work our way up to Tk, but we shall first describe a method that starts at Td and works its way down. To find Td, we start by including the set of red edges and running Boruvka’s minimum spanning tree algorithm with contraction until it terminates.  Since there are only 
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edges and Boruvka’s algorithm needs only 
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passes, at a cost of 
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per pass, the total time is 
[image: image27.wmf](log).

Onn

 A more careful analysis shows that the running time is 
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 each pass reduces the number of vertices by a factor of at least 2. All cycles in the current graph contain the vertex into which r has been contracted. This implies that the graph is always sparse: there are at most
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edges, where 
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is the current number of vertices. The running time satisfies the recurrence 
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which implies
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Now we shall show how to get from Td to Tk in 
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swaps, spending time 
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per swap. We maintain the connected components of 
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 For each such component, we maintain a heap of the edges with one end in the component. We collect the minimum-weight edges, one per component heap, into a global heap called the swap heap. The key of an edge e in the swap heap is its weight minus the weight of the red edge f incident to the component whose heap contains e. One step consists of finding the edge e of minimum key in the swap heap, finding the corresponding red edge f, and doing the swap. This converts Tj to Tj-1 by adding e and deleting f.  We need to do a delete min on the swap heap, a delete on the two component heaps containing e, a meld of the two components heaps previously containing e, a find min in the resulting new component heap, and an insert into the global heap. With F-heaps (or binomial heaps), the heap operations take 
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time (amortized for F-heaps) per swap. We also need a disjoint set union structure to keep track of components, but this structure takes less than 
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time per swap. The total time for the 
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swaps needed is 
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Note that none of the component heaps formed by melding ever contains an edge with both ends in the component, because the only possible such edge is the one involved in the swap, which is deleted from both component heaps containing it before the meld; this is since T is a tree.

Now we describe a (simpler) method that starts at T1 and works its way up. First, we start with Td (found in 
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time as above) and shrink each connected component of green edges to a single vertex.

All the shrunken edges are in every Tk and do not affect the computation of minimum swaps. Now we have a graph of d+1 vertices consisting of a tree of green edges on d vertices and d red edges, incident to the remaining vertex.  T1 consists of the green tree and the cheapest red edge. For each green edge (v,w) we compute the best swap using it. There are at most two possibilities: delete (v,w) and add either (r,v) or (r,w). We keep the cheapest swap for each green edge in a heap, choose the cheapest and do it. When a swap adds a red edge, say (r,x), we must delete each swap using (r,x) from the heap, and for each corresponding green edge, recompute its cheapest swap, if any, and insert it back into the heap. Over the course of the algorithm, there are at most 
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heap insertions and deletions. The total running time is 
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 we do not need a disjoint set union data structure. An alternative is to maintain cheapest swap for each red edge, which leads to an 
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running time but needs a heap of green edges for each red edge as well as a global heap.

Finally, to get on 
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algorithm, we do the swaps in batches. We start by contracting the green connected components of Td and contracting the single red edge in T1: this red edge is in T2,…,Td, and contracting it affects no relevant swaps. In general we will contract red edges as we discover that they are in the goal tree Tk. The contracted graph may be a multigraph it can have up to two edges, one red and one green, between each pair of vertices. In general we will have a graph with a distinguished vertex r. All red edges are incident to r, and green edges, connect ends of red edges, including possibly r.

Both the red edges and the green edges form trees; the red edges form the current tree, initially Td with one red edge contracted. We do swaps to delete red edges and add green edges. We also compute red edges that must be in the goal tree, and contract them. Observe that a green edge only ever has two potential swaps, one for each of the red edges incident to its (non-r) ends. Let s be the goal number of swaps, initially 
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 The algorithm is as follows:

While 
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 repeat the following steps:

1. For each red edge, find its smallest swap with a green edge.

2. Find the
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smallest swaps, and the 
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 smallest swaps.

3. Add the green edges of the 
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smallest swaps to the goal tree T.

4. Add the red edge of all but the 
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 smallest swaps to Tk.
5. Decrease s by the number of green edges added to Tk in step 3.

6. Contract all the edges added to Tk in steps 3 and 4.

7. For each pair of vertices 
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 delete all but the cheapest red and green edges between v and w (if they exist).

The goal tree Tk contains the red edges added in Step 4 plus the initial red edge and the original green edges corresponding to the green edges added in Step 3 and those contracted initially.

Step 3 adds at least 
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 green edges to Tk, because a green edge is in at most two swaps. Step 4 and the contraction guarantees that the size of the graph when under consideration shrinks by at least a factor of two with each iteration. One iteration takes linear time, using selection in step 2. The overall running time is 
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One also needs to prove the correctness of the algorithm; namely if we do swaps one-at-a-time, they will include the green edges added in step 3 and not the red edges added in step 4. This relies on the fact that a green edge can only be involved in two potential swaps. For details see the paper cited above.

2. We obtain a simple 
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-time solution by modifying Dijkstra’s single-source shortest path algorithm, implemented using an F-heap. The key for a vertex v is the maximum weight of an edge from a scanned vertex to v, and the heap is a max-heap instead of a min-heap. Proving the correctness of this method is straightforward.

Unfortunately I do not know an 
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-comparison algorithm. This is an open research problem. I do know an 
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- time algorithm. This algorithm relies on selection and on an incremental search algorithm. First observe that all we need to determine is the maximum weight w such that there is a path from 
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 to 
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 in the subgraph containing all edges of weight w or more. We can test for such a path in 
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time by graph search. We thus concentrate on determining w.

Suppose we have divided the edges into groups 
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 with all edges in Ei having no greater weight than those in Ei+1, for 
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 We can determine which Ei contains an edge with weight w by using on incremental search, as follows. Add 
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 to a set L of labeled vertices. Begin with a graph of no edges, i=0, and 
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  Repeat the following steps until 
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1. Add 1 to i. Add the edges in Ei to G. For each edge
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with 
[image: image66.wmf],

vS

Î

add v to L.

2. While 
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 remove some vertex v from L. For each edge (v,w), delete (v,w) and, if 
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 add w to L. If  
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 add v to S.

Each edge is processed once in this algorithm; proving its correctness is routine. We use this algorithm as follows. In the first pass, we split E as equally as possible into E1 and E2 and do an incremental search to determine which half contains an edge with weight w. In the kth pass, we have previously split E into 
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and we know Ei contains an edge with weight w. We split Ei in 
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subsets, as equally as possible, and do an incremental search using the refined partition of E. We stop when finding an Ei that is a singleton set and contains an edge of weight w. The definition of 
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 It follows that the number of passes is 
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. Each pass takes 
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time plus the time to split Ei. In pass k, Ei has size at most 
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 Using repeated selection, splitting Ei takes time 
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 Thus each pass takes 
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time, and the total time is 
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3. Adding a constant c to the weight of every edge adds the same constant to the mean weight of every cycle and also adds the same constant to 
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 as defined in step 2. Let M be the mean weight of a minimum mean-weight cycle. Subtract M from the weight of all the edges. With the new weights, the minimum mean cycle weight is 0. We shall show that with the new weights, 
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, which implies that with the original weights 
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Consider the graph with the new weights. Since the minimum mean cycle weight is 0, all cycles have non-negative weight. This means that shortest paths from 
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to all vertices exist, and such paths can be found that are simple, and thus have at most 
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 edges. For each vertex x, let 
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since there are simple shortest paths, and 
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 This implies that 
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 as defined in the formula in step 2 for the new edge weights, is non-negative. Now all we need to show is that, for some v and some k, 
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which will imply that 
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Replace each new edge weight 
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 Such an edge length transformation preserves the length of every cycle, and it preserves shortest paths: for any pair of vertices x and y, every path from x to y has its weight increased by 
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 all intermediate 
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- values cancel. If x=y (if the path is a cycle), the weight stays the same, This transformation also preserves the value inside the ratio in the formula in step 2, since the same amount is added to (or subtracted from) both 
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Now all edges have non-negative weights, since shortest paths satisfy 
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(or there would be a shorter path from s to y via x), which implies 
[image: image102.wmf]"

(,)0.

wxy

³

 Since a minimum mean-weight cycle has weight 0, all its edges must have exactly 0 weight, and any cycle of 0-weight edges is a minimum mean-weight cycle. Let C be a minimum mean-weight cycle, and let p be a shortest (simple) path from s to any vertex on C.

Let p’ be the path that begins at s, follows p, and continues along C until traversing n edges. Let C contain 
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 edges, and let 
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is the same, since they only differ by having different numbers of edges on 
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 all of which have transformed weight 0. Thus if 
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 ends at v, 
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which implies that 
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It follows that step 2 correctly computes the minimum mean cycle weight. Step 3 transforms the problem so that the minimum mean cycle weight is zero, and Step 4 transforms the problem so that the minimum mean cycle weight is still zero and every edge weight is non-negative.  This any minimum mean weight cycle has all zero edge weights, and there is at least one such cycle. This establishes the correctness of the algorithm.

Step 1 takes 
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values for successively increasing values of k using the following recurrence: 
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 For each value of k, each edge must be examined once. If we keep track of the current 
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 values; and, for each vertex v, of the current best minimum 
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 then we need only O(n) extra space for Steps 1 and 2, and Step 2 takes only O(n) time after Step 1. Step 3 takes O(n) time to do the edge weight changes and O(n) time to update the shortest distances computed in Step 1. Step 4 takes O(m) time using a depth-first search restricted to the zero-weight edges.

4. Consider any maximum flow. Find a path of positive flow from s to t. Such a path exists if the flow value is positive by conservation of flow at each vertex other than s and t. Let c be the minimum flow of any edge on p. Reduce the flow on p by amount c. This reduces the flow on at least one edge from positive to zero. Repeat this process until the flow is zero, which must happen after at most m paths, one per edge, are found. The m or fewer paths sum to f, and each is an augmenting path in the residual graph corresponding to the flow that is the sum of the previous paths. Note, however, that this construction does not imply that each such augmentation saturates on edge. Indeed, there are examples in which for any decomposition of a flow into a sum of positive flows along paths, no path individually saturates an edge.

5. We color the edges one-at-a-time in arbitrary order, recoloring if necessary. Let (v,w) be the next edge to be colored, with v on the “A” side of G and w on the “B” side. In addition to (v,w), each of v and w is incident to at most 
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 other edges. Thus there is one color unused at v and one color unused at w. If these colors are the same, use it to color (v,w). Suppose these colors are different, say color 1 unused at v and color 2 unused at w. If no edge incident to v is color 2, we use 2 to color (v,w). Otherwise, let (v,x) be the edge incident to v of color 2. Consider the maximal path starting with (v,x) that alternatives color 2 and color 1. Since the graph is finite and at most one edge of any color is incident to any vertex, this path exists and is uniquely defined; since the graph is bipartite and no edge of color 1 is incident to v, we actually get simple path (with two ends) and not a cycle. This path also does not contain w, since walking along the path starting with (v,x), each time we reach the “B” side of G we arrive by a color 2 edge, and w has no color 2 edge. If we swap colors along the path, we free color 2 to be used on (v,w).
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