
Pipelining

CS 217

Instruction Processing Steps
• Instruction fetch: Fetch and decode instruction,

retrieve operands from registers

• Execute: Execute arithmetic instruction,
compute branch target address,
compute load/store memory address

• Memory access: Access memory for load or store,
Fetch instruction at target of branch

• Store results: Write instruction results to registers

Pipelining

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

PC nPC
12 16
16 20
20 24
24 28

12
16
20
24

add %i1, %i1, %o1
add %i1, %o1, %o1
sub %o1, 3, %o1
add %o1, %i2, %o1

Pipelined Load Instructions
• Problem: load followed by use

ld [%o0], %o1 F E M W
F E M W

F E M W
add %o1, %o2, %o2

ld [%o0], %o1 F E M W

F E M Wadd %o1, %o2, %o2

load delay slot

Load delay slots are inserted automatically

Pipelined Branch Instructions
• Problem: instruction after branch

cmp %o0, %o1 F E M W
F E M W

F E M W
ble L1

mov %o0, %o1

L1: add %o0, %o0, %o0 F E M W

F E M W

F E M W
branch delay slot

F E M Wcmp %o0, %o1

ble L1

mov %o0, %o1

L1: add %o0, %o0, %o0 F E M W

Updating the Program Counter
• Fetch instruction at address stored in nPC

o Most instructions: nPC = PC + 4
o Branch instructions: nPC is computed in execute stage

• Execute instruction at address stored in PC
o After execute: PC = nPC

PC nPC
12 16
16 20
20 36

36 40
40 44

12
16
20
24
28
32
36
40

cmp a,b
ble L1
nop
mov a,c
ba L2
nop

L1: mov b,c
L2: ...

Delay Slots
• One option: use nop in all delay slots

for (i=0; i<n; i++)
. . .

#define i %l0
#define n %l1
clr i

L1: cmp i,n
bge L2; nop
. . .
inc i
ba L1; nop

Delay Slots
• Optimizing compilers try to avoid delay slots

for (i=0; i<n; i++)
. . .

#define i %l0
#define n %l1
clr i

L1: cmp i,n
bge L2; nop
. . .
inc i
ba L1; nop

#define i %l0
#define n %l1
clr i
ba L2; nop

L1: . . .
inc i

L2: cmp i,n
bl L1; nop

Delay Slots
• Optimizing compilers try to fill delay slots

if (a>b) c=a; else c=b;

cmp a,b cmp a,b
ble L1; ble L1
nop mov b,c
mov a,c mov a,c
ba L2; L1: …
nop

L1: mov b,c
L2: ...

Pipelined Branch Instructions
• Problem: instruction after branch

cmp %o0, %o1 F E M W
F E M W

F E M W
ble L1

mov %o0, %o1

L1: add %o0, %o0, %o0 F E M W

F E M W

F E M W
branch delay slot

F E M Wcmp %o0, %o1

ble L1

mov %o0, %o1

L1: add %o0, %o0, %o0 F E M W

Pipelined Branch Instructions
• Problem: instruction after branch

cmp %o0, %o1 F E M W
F E M W

F E M W
ble L1

mov %o0, %o1

L1: add %o0, %o0, %o0 F E M W

F E M W

F E M W

F E M W

F E M W

cmp %o0, %o1

ble L1

L1: add %o0, %o0, %o0

mov %o0, %o1

Programmer should try to insert independent instructions in branch delay slots

Annul Bit
• Controls the execution of the delay-slot

instruction
bg,a L1
mov a,c

the ,a causes the mov instruction to be executed
if the branch is taken, and not executed if
the branch is not taken

• Exception
ba,a L does not execute the delay-slot instruction

Annul Bit (cont)
• Optimized for (i=0; i<n; i++) 1;2;…;n

clr i clr i
ba L2 ba,a L2

L1: 1 L1: 2
2 . . .
. . . n
n inc i
inc i L2: cmp i,n

L2: cmp i,n bl,a L1
bl L1 1
nop

While-Loop Example

while (...)
{

stmt1
:

stmtn
}

test: cmp ...
bx done
nop
stmt1
:

stmtn
ba test
nop

done: ...

3 instr

2 instr

While-Loop (cont)

• Move test to end of loop

test: cmp ...
bx done
nop

loop: stmt1
:

stmtn
cmp ...
bnx loop
nop

done: ...

• Eliminate first test

ba test
nop

loop: stmt1
:

stmtn
test: cmp ...

bnx loop
nop
...

While-Loop (cont)
• Eliminate the nop in the loop

ba test
nop

loop: stmt2
:

stmtn
test: cmp ...

bnx,a loop
stmt1
...

now 2 overhead instructions per loop

If-Then-Else Example

if (...) {
t-stmt1

:
t-stmtn

}
else {

e-stmt1
:

e-stmtm
}

How optimize?

cmp ...
bnx else
nop
t-stmt1
:

t-stmtn
ba next
nop

else: e-stmt1
e-stmt2
:
e-stmtm

next: ...

If-Then-Else Example

if (...) {
t-stmt1

:
t-stmtn

}
else {

e-stmt1
:

e-stmtm
}

How optimize?

cmp ...
bnx, a else
e-stmt1
t-stmt1
:

t-stmtn
ba next
nop

else: e-stmt2
:
e-stmtm

next: ...

If-Then-Else Example

if (...) {
t-stmt1

:
t-stmtn

}
else {

e-stmt1
:

e-stmtm
}

How optimize?

cmp ...
bnx, a else
e-stmt1
t-stmt1
:

ba next
t-stmtn

else: e-stmt2
:
e-stmtm

next: ...

	Pipelining
	Instruction Processing Steps
	Pipelining
	Pipelined Load Instructions
	Pipelined Branch Instructions
	Updating the Program Counter
	Delay Slots
	Delay Slots
	Delay Slots
	Pipelined Branch Instructions
	Pipelined Branch Instructions
	Annul Bit
	Annul Bit (cont)
	While-Loop Example
	While-Loop (cont)
	While-Loop (cont)
	If-Then-Else Example
	If-Then-Else Example
	If-Then-Else Example

