vvvv

CS 217

Virtual Memory

[

Memory Management

* Problem 1:

o Two programs can't control all of memory simultaneously

* Problem 2:

o One program shouldn’t be allowed to access/change

the memory of another program

* Problem 3:

o Machine may have only 256MB of memory,
while virtual address space is 4GB

Operating system must manage
sharing of physical memory
between many processes

0
0x2000

Oxffffffff

oS

Text

Data

BSS

Heap

Stack

K

Virtual Memory Q}

vvvv

* Basic idea
o Programs don’t (and can’t) name physical addresses
o Instead, they name virtual addresses
(each process has own address space)

o The kernel translates each virtual address into a physical address
before the operation is carried out

» Advantages
o Can run many programs at once,
without them worrying that they will use the same physical memory
o Kernel controls access to physical memory, so one program can’t
access or modify the memory of another

o Can run a program that uses more virtual memory than the
computer has available in physical memory

K

Segmentation

* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory

» Use base and limit registers to translate virtual addresses
to physical addresses

1
limit base
Base register »
Virtual l i Phvsi
ysical
Address Address 2
oo | TS O =
Limit register »
Physical

Memory

4 - N
Segmentation
* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory
* Problems: «
o Physical Di
Segments may grow Memory Storage
o Fragmentation
o Large processes
o Swapping efficiency 1
Base register » 3
2
Limit register »
J

/

Paging

* Motivation
o Mapping entire segments is too coarse granularity
o Mapping individual bytes is too fine granularity

» Pages
Divide up memory into blocks, called pages (~4KB)
Each virtual page can be mapped to any physical page
Each translation involves two steps:
— Decide which physical page holds the virtual address
— Decide a what offset the virtual address is inside the page
The physical address is formed by gluing together
the physical page number and the offset within the page

o}

[]

Q

[o}

-

Paging

logical
address

physical
address

P
i f —
page table
()
. EE
Paging (cont) '
e Paging Example D
2 ; physigal mgmory
: e [¥ Each process has its own page table J al i
il f i J
6|2 k
i ..o 12 B
1iE of 3| s
91 j “
10| k] n i
11 1 3l 1 L
12| m 12
131 n 1| 2
14| 0
15
page table 16
logical memory
* 4-byte pages
* Consider the virtual address 11,4=1011, 20 a
* Chop it into two parts b
= Virtual page number 2;=10, ¢
- Offset within page 3,y=11, d
* Look up the page table and find tha 24 ¢]
2 is stored at physical page 1 ; Silberschatz
. . :
The physical address is 779=0111, R & Peterson

J

p
Paged Segmentation

logical address

d

% SEgMent [page table]
t length base

segment table

-

Swapping

L Silberschatz
page table for & Pet
segment s er&)n
4
~N

=
=))
i)
R g,

* What happens if cumulative sizes of segments
exceeds physical memory?

[b
Swapping to Disk

« If all the virtual memory can’t fit in physical memory,
the OS can temporarily stash some pages on disk
o Can support virtual memory bigger than physical memory

page 2 | P — 1
= 1

000 |
- — 1o |
B == Sl
| B e

memory —
map } ‘ u [—‘ B ‘
. S o

E physical
page n . .
o Silberschatz

& Peterson
J

[

Page Table

* The OS stores for each page ...
o Physical page number (24 bits)
Cacheable bit (C)
Modified bit (M)
Referenced bit (R)
Access permissions (Read only, Read/write)
Valid/invalid (V)

[o}

[o}

o}

o}

o}

/

Page Faults &»

vvvv

* If process accesses — O
virtual address that :
maps to a page
not in memory,
then the OS must g
fetch that page — f\

from disk 8

~/ restart

* Since most ‘ o Y
references follow | I
others on same e [© e

page, the cost of | —

reading from disk —
is amortized across I et Silberschatz

many references & Peterson

J

/

Page Replacement

* When read one page from disk,
another page must be evicted?

* Which page should be replaced?
o Ideal:
— One that will be accessed furthest in future
o Practical heuristics:
— Least recently used
— Least frequently used
— Etc.

void StringArray_read(StringArray_T s, FILE *fp)
{
char string[MAX_STRI NG_LENGTH];

s->nstrings = 0;
while (fgets(string, MAX_STRING LENGTH, fp)) {
StringArray_grow(nstrings+l);
s->strings[(s->nstrings)++] = strdup(string);
}
}

[

\
B
Page Replacement (cont)
C—
frame valid/invalid C_{ \/\1
\ / bit ‘ O T — — |
*JP
[] out
victim ‘
| '
[|
i-ri“ |y (;)\.hd“p\.’ll' : — ‘
L invalid ’ G)
H PH® e page desived L]
I.'.,‘!T(‘_ table for page n ‘
table W vas |
:)
‘ b e
L' | Silberschatz
hysica
xr;u-nml\ & Peterson/

-
Working Sets

* Locality of reference
o Most memory references are nearby previous ones

* Working set

o At any point in a program’s execution, usually
a small region of memory is accessed frequently

o The region of memory (working set) changes during
the course of execution

int main()
{
Array_T *strings;
strings =

return O;

ReadSt ri ngs(stdin);
SortStrings(strings);
WiteStrings(strings,

stdout);

[

Thrashing

* What happens when cumulative size of working sets
exceeds capacity of physical memory?

[

Storage Hierarchy

* Registers
~128, 1-5ns access time (CPU cycle time)

» Cache
1KB - 4MB, 20-100ns (multiple levels)

* Memory

64MB — 2GB, 200ns
* Disk

1GB - 100GB, 10ms

* Long-term Storage
1TB, 1-10s

[
b
Storage Hierarchy Latency
Andromdeda
10° Tape /Optical %= 2,000 Years
Rabat
. A Vo,
ﬁ 107 Disk 2 Years
$
o
O
100 Memory ; A
10 On Board Cache WLLKSEIIIT 10 min
2 On Chip Cache E—]
1 Registers My Head 1 min
*® And the “universe” is expanding -- farther things are getting farther faster! Jm
Gray
J

p
Summary

* Memory management
o Important function of operating system
o Understanding how it works is critical to
effective system development

* Virtual memory

o OS & Hardware support for mapping
virtual addresses to physical addresses

o Mapping is usually at page granularity, which facilitates ...
— Relocation
— Swapping to disk
— Protection
— Fragmentation
— Sharing

10

