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Virtual Memory
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Memory Management

* Problem 1:

o Two programs can't control all of memory simultaneously

* Problem 2:

o One program shouldn’t be allowed to access/change

the memory of another program

* Problem 3:

o Machine may have only 256MB of memory,
while virtual address space is 4GB

Operating system must manage
sharing of physical memory
between many processes
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* Basic idea
o Programs don’t (and can’t) name physical addresses
o Instead, they name virtual addresses
(each process has own address space)

o The kernel translates each virtual address into a physical address
before the operation is carried out

» Advantages
o Can run many programs at once,
without them worrying that they will use the same physical memory
o Kernel controls access to physical memory, so one program can’t
access or modify the memory of another

o Can run a program that uses more virtual memory than the
computer has available in physical memory
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Segmentation

* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory

» Use base and limit registers to translate virtual addresses
to physical addresses
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Segmentation
* Allocate memory for segments
o Provide mapping from addresses in segments to physical memory
* Problems: «
o Physical Di
Segments may grow Memory Storage
o Fragmentation
o Large processes
o Swapping efficiency 1
Base register » 3
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Paging

* Motivation
o Mapping entire segments is too coarse granularity
o Mapping individual bytes is too fine granularity

» Pages
Divide up memory into blocks, called pages (~4KB)
Each virtual page can be mapped to any physical page
Each translation involves two steps:
— Decide which physical page holds the virtual address
— Decide a what offset the virtual address is inside the page
The physical address is formed by gluing together
the physical page number and the offset within the page
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* 4-byte pages
* Consider the virtual address 11,4=1011, 20 a
* Chop it into two parts b
= Virtual page number 2;=10, ¢
- Offset within page 3,y=11, d
* Look up the page table and find tha 24 ¢ ]
2 is stored at physical page 1 ; Silberschatz
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The physical address is 779=0111, R & Peterson
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Paged Segmentation
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* What happens if cumulative sizes of segments
exceeds physical memory?
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Swapping to Disk

« If all the virtual memory can’t fit in physical memory,
the OS can temporarily stash some pages on disk
o Can support virtual memory bigger than physical memory
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Page Table

* The OS stores for each page ...
o Physical page number (24 bits)
Cacheable bit (C)
Modified bit (M)
Referenced bit (R)
Access permissions (Read only, Read/write)
Valid/invalid (V)
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* If process accesses — O
virtual address that :
maps to a page
not in memory,
then the OS must g
fetch that page — f\

from disk 8

~/ restart
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reading from disk —
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Page Replacement

* When read one page from disk,
another page must be evicted?

* Which page should be replaced?
o Ideal:
— One that will be accessed furthest in future
o Practical heuristics:
— Least recently used
— Least frequently used
— Etc.

void StringArray_read(StringArray_T s, FILE *fp)
{
char string[ MAX_STRI NG_LENGTH];

s->nstrings = 0;
while (fgets(string, MAX_STRING LENGTH, fp)) {
StringArray_grow(nstrings+l);
s->strings[(s->nstrings)++] = strdup(string);
}
}
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Page Replacement (cont)
C—
frame valid/invalid C_{ \/\1
\ / bit ‘ O T — — |
\\*JP
[ ] out
victim ‘
| '
[ |
i-ri“ |y (;)\.hd“p\.’ll' : — ‘
L invalid ’ G )
H PH® e page desived L]
I.'.,‘!T(‘_ table for page n ‘
table W vas |
: )
‘ b e
L' | Silberschatz
hysica
xr;u-nml\ & Peterson/

-
Working Sets

* Locality of reference
o Most memory references are nearby previous ones

* Working set

o At any point in a program’s execution, usually
a small region of memory is accessed frequently

o The region of memory (working set) changes during
the course of execution

int main()
{
Array_T *strings;
strings =

return O;

ReadSt ri ngs(stdin);
SortStrings(strings);
WiteStrings(strings,

stdout);
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Thrashing

* What happens when cumulative size of working sets
exceeds capacity of physical memory?
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Storage Hierarchy

* Registers
~128, 1-5ns access time (CPU cycle time)

» Cache
1KB - 4MB, 20-100ns (multiple levels)

* Memory

64MB — 2GB, 200ns
* Disk

1GB - 100GB, 10ms

* Long-term Storage
1TB, 1-10s
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Storage Hierarchy Latency
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Summary

* Memory management
o Important function of operating system
o Understanding how it works is critical to
effective system development

* Virtual memory

o OS & Hardware support for mapping
virtual addresses to physical addresses

o Mapping is usually at page granularity, which facilitates ...
— Relocation
— Swapping to disk
— Protection
— Fragmentation
— Sharing
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