
1

1

Operating Systems,
System Calls, and Buffered I/O

CS 217

2

Operating System (OS)
• Provides each process with a virtual machine

� Promises each program the illusion of
having whole machine to itself

Hardware

OS Kernel

User
Process

User
Process

User
Process

User
Process

2

3

Operating System
• Coordinates access to physical resources

� CPU, memory, disk, i/o devices, etc.

• Provides services
� Protection
� Scheduling
� Memory management
� File systems
� Synchronization
� etc.

Hardware

OS Kernel

User
Process

User
Process

4

OS as Government
• Makes lives easy

� Promises everyone whole machine
(dedicated CPU, infinite memory, …)

� Provides standardized services
(standard libraries, window systems, …)

• Makes lives fair
� Arbitrates competing resource demands

• Makes lives safe
� Prevent accidental or malicious damage

by one program to another

Randy
Wang

3

5

OS History
• Development of OS paradigms:

� Phase 0: User at console
� Phase 1: Batch processing
� Phase 2: Interactive time-sharing
� Phase 3: Personal computing
� Phase 4: ?

Computing price/performance affects OS paradigm

Randy
Wang

6

Phase 0: User at Console
• How things work

� One program running at a time
� No OS, just a sign-up sheet for reservations
� Each user has complete control of machine

• Advantages
� Interactive!
� No one can hurt anyone else

• Disadvantages
� Reservations not accurate, leads to inefficiency
� Loading/ unloading tapes and cards takes forever and leaves the

machine idle

Randy
Wang

4

7

Phase 1: Batch Processing
• How things work

� Sort jobs and batch those with similar needs
to reduce unnecessary setup time

� Resident monitor provides “automatic job sequencing”: it interprets
“control cards” to automatically run a bunch of programs without
human intervention

• Advantage
� Good utilization of machine

• Disadvantagess
� Loss of interactivity (unsolvable)
� One job can screw up other jobs,

need protection (solvable)
Good for

expensive hardware
and cheap humans

Good for
expensive hardware
and cheap humans

Randy
Wang

8

Phase 2: Interactive Time-Sharing
• How things work

� Multiple users per single machine
� OS with multiprogramming and memory protection

• Advantages:
� Interactivity
� Sharing of resources

• Disadvantages:
� Does not always provide

reasonable response time

Good for
cheap hardware

and expensive humans

Good for
cheap hardware

and expensive humans

Randy
Wang

5

9

Phase 3: Personal Computing
• How things work

� One machine per person
� OS with multiprogramming and memory protection

• Advantages:
� Interactivity
� Good response times

• Disadvantages:
� Sharing is harder

Good for
very cheap hardware

and expensive humans

Good for
very cheap hardware

and expensive humans

Randy
Wang

10

Phase 4: What Next?
• How will things work?

� Many machines per person?
� Ubiquitous computing?

• What type of OS?

Good for
very, very cheap hardware

and expensive humans

Good for
very, very cheap hardware

and expensive humans

Randy
Wang

6

11

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Kernel

Stdio L ibrary FI LE * stream

Appl Prog
User

process

12

System Calls
• Method by which user processes invoke kernel services:

“protected” procedure call

• Unix has ~150 system calls; see
� man 2 intro
� /usr/include/syscall.h

File System

Stdio L ibrary

Appl Prog

open, cl ose, r ead,
wr i t e, seek

f open, f c l ose, pr i nt f ,
f get c , get char , …

user

kernel

7

13

System Calls
• Processor modes

� user mode: can execute normal instructions and access only user
memory

� supervisor mode: can also execute privileged instructions and
access all of memory (e.g., devices)

• System calls
� user cannot execute privileged instructions
� users must ask OS to execute them - system calls
� system calls are often implemented using traps
� OS gains control through trap, switches to supervisor model,

performs service, switches back to user mode, and gives control
back to user

14

Interrupt-Driven Operation
• Everything OS does is interrupt-driven

� System calls use traps to interrupt

• An interrupt stops the execution dead in its tracks,
control is transferred to the OS

� Saves the current execution context in memory
(PC, registers, etc.)

� Figures out what caused the interrupt
� Executes a piece of code (interrupt handler)
� Re-loads execution context when done,

and resumes execution

Randy
Wang

8

15

Interrupt-Driven Operation
• Parameters passed…

� in fixed registers
� in fixed memory locations
� in an argument block, w/ block’s address in a register
� on the stack

• Usually invoke system calls with trap instructions
� t a 0
� with parameters in %g1 (function), %o0. . %o5,

and on the stack

16

System Call Processing
• In your program:

mov ar g1, %o0
mov ar g2, %o1

mov ar g3, %o2

cal l f unct i on; nop

mov %o0, r esul t

• In user-level library (l i bc)
function: set i d, %g1

t a 0
r et l ;
nop

• In kernel:
� look at %g1 to see what interrupt to process

9

17

Interrupt Processing
Randy
Wang

18

System-call interface = ADTs
ADT

operations

• File input/output
� open, close, read, write, dup

• Process control
� fork, exit, wait, kill, exec, ...

• Interprocess communication
� pipe, socket ...

10

19

open system call
NAME

open - open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, mode_t mode);

DESCRIPTION

The open() system call is used to convert a pathname into a file
descriptor (a small, non-negative integer for use in subsequent I/O
as with read, write, etc.). When the call is successful, the file
descriptor returned will be . . .

flags examples:

O_RDONLY

O_WRITE|O_CREATE

mode is the permissions
to use if file must be
created

20

cl ose system call
NAME

c l ose - close a file descriptor

SYNOPSIS

int close(int fd);

DESCRIPTION

c l ose closes a file descriptor, so that it no longer refers to any file and
may be reused. Any locks held on the file it was associated with, and owned
by the process, are removed (regardless of the file descriptor that was used
to obtain the lock)

11

21

r ead System Call
NAME

r ead - read from a file descriptor

SYNOPSIS

int read(int fd, void *buf, int count);

DESCRIPTION

r ead() attempts to read up to count bytes from file descriptor fd
into the buffer starting at buf.

If count is zero, read() returns zero and has no other results. If
count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates
end of file), and the file position is advanced by this number. It is not
an error if this number is smaller than the number of bytes
requested On error, -1 is returned, and er r no is set
appropriately.

22

wr i t e System Call
NAME

wr i t e - read from a file descriptor

SYNOPSIS

int write(int fd, void *buf, int count);

DESCRIPTION

wr i t e writes up to count bytes to the file referenced by the file descriptor fd
from the buffer starting at buf.

RETURN VALUE

On success, the number of bytes written is returned (zero indicates nothing
was written). It is not an error if this number is smaller than the number of
bytes requested On error, -1 is returned, and er r no is set appropriately.

12

23

Making sure it all gets written

i nt saf e_wr i t e(i nt f d, char * buf , i nt nbyt es)
{

i nt n;
char * p = buf ;
char * q = buf + nbyt es;
whi l e (p < q) {

i f ((n = wr i t e(f d, p, q- p)) > 0)
p += n;

el se
per r or (“ saf e_wr i t e: ”) ;

}
r et ur n nbyt es;

}

24

Buffered I/O
• Single-character I/O is usually too slow

i nt get char (voi d) {
char c ;
i f (r ead(0, &c, 1) == 1)

r et ur n c ;
el se r et ur n EOF;

}

13

25

Buffered I/O (cont)
• Solution: read a chunk and dole out as needed

i nt get char (voi d) {
st at i c char buf [1024] ;
st at i c char * p;
st at i c i nt n = 0;

i f (n- -) r et ur n * p++;

n = r ead(0, buf , s i zeof (buf)) ;
i f (n <= 0) r et ur n EOF;
n = 0;
p = buf ;
r et ur n get char () ;

}

26

Standard I/O Library
#def i ne get c(p) (- - (p) - >_cnt >= 0 ? \

(i nt) (* (uns i gned char *) (p) - >_pt r ++) : \

_f i l buf (p))

t ypedef s t r uct _i obuf {

i nt _cnt ; / * num char s l ef t i n buf f er * /

char * _pt r ; / * pt r t o next char i n buf f er * /

char * _base; / * begi nni ng of buf f er * /

i nt _buf s i ze; / * s i ze of buf f er * /

shor t _f l ag; / * open mode f l ags, et c . * /

char _f i l e; / * assoc i at ed f i l e descr i pt or * /

} FI LE;

ext er n FI LE * s t di n, * st dout , * st der r ;

14

27

Why is getc a macro?
#def i ne get c(p) (- - (p) - >_cnt >= 0 ? \

(i nt) (* (uns i gned char *) (p) - >_pt r ++) : \

_f i l buf (p))

#def i ne get char () get c(s t di n)

• Invented in ~1975, when
� Computers had slow function-call instructions
� Compilers couldn’t inline-expand very well

• It’s not 1975 any more
� Moral: don’t invent new macros, use functions

28

fopen
FI LE * f open(char * name, char * r w) {

Use malloc to create a struct _iobuf

Determine appropriate “flags” from “rw” parameter

Call open to get the file descriptor

Fill in the _iobuf appropriately

}

15

29

Stdio library
• fopen, fclose

• feof, ferror, fileno, fstat
� status inquiries

• fflush
� make outside world see

changes to buffer

• fgetc, fgets, fread

• fputc fputs, fwrite

• printf, fprintf

• scanf, fscanf

• fseek

• and more ...

This (large) library interface is not
the operating-system interface;
much more room for flexibility.

This ADT is implemented in terms
of the lower-level “file-descriptor”
ADT.

30

Summary
• OS virtualizes machine

� Provides each process with illusion of having whole machine to
itself

• OS provides services
� Protection
� Sharing of resources
� Memory management
� File systems

• Protection achieved through separate kernel
� User processes uses system calls to ask kernel

to access protected stuff on its behalf

• User level libraries layered on top of kernel interface

