Inter-Process Communication

CS 217

[

Networks

* Mechanism by which two processes exchange
information and coordinate activities

Computer Computer
Computer

Computer

Computer

[

b
Networks
* A network can be defined recursively as...
o two or more nodes o two or more

connected by a link, networks connected

or by a node
Che Pn

. Fon ja

—-

< w4 N

[

Names and Addresses

* Host name
o like a post office name; e.g., www.cs.princeton.edu

» Host address
o like a zip code; e.g., 128.112.92.191

e Port number
o like a mailbox; e.g., 0-64k

p
Network Communication

* What can go wrong in the network?
Bit-level errors (electrical interference)
Packet-level errors (congestion)

Link and node failures

Packets are delayed

Packets are deliver out-of-order

Third parties eavesdrop

o

o o o [e] o

K

Layering

» Use abstractions to hide complexity
» Abstraction naturally lead to layering

» Alternative abstractions at each layer

Application programs

Request/reply |Message stream
channel channel

Host-to-host connectivity

Hardware

[

ISO Architecture

vvvv

» Seven abstract layers

End host

Application

Session

End host

Application

Session

| Network |

| Network |

| Network | | Network |

| Data link |

[pata link |

[Datalink | [patatink |

| Physical |_|, Physicall_‘ Physical l_l Physical |

One or more nodes
within the network

[

Internet Protocols

user
process

Appl Prog

Socket API

kernd

v

TCPor UDP

byte-stream or datagram

v

IP

routes through the Internet

v

Driver

transmits/receives on LAN

v
Hardware

K

Socket API

» Socket Abstraction
o end-point of a network connection
o treated like a file descriptor

» Creating a socket
o int socket(int domamin, int type, int protocol)

o domain = PF_INET, PF_UNIX
o type = SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

K

Socket Example: Client/Server

» Server: process that provides a service
o e.g., file server, web server, mail server
o called a passive participant: waits to be contacted

» Client: process that requests a service
o e.g., desktop machine, web browser, mail reader
o called an active participant: initiates communication

/

Socket Example (cont)

» Passive Open (on server)
int bind(int socket,
struct sockaddr *addr,
i nt addr_I en)
int listen(int socket, int backl og)
i nt accept (i nt socket,
struct sockaddr *addr,
i nt addr I en)

 Active Open (on client)
int connect(int socket,
struct sockaddr *addr,
i nt addr _| en)

/

Socket Example (cont)

» Sending/Receiving Messages
I nt send(int socket, char *buf,
int blen, int flags)
int recv(int socket, char *buf,
int blen, int flags)

K

Communication Performance

« Bandwidth (throughput)
o data transmitted per time unit (e.g., Mbps)

» Latency (delay)
o time to send message from point A to point B
» Latency = Propagation + Transmit + Queue
» Propagation = Distance / ¢
» Transmit = Size / Bandwidth

K

Inter-Process Communication

* Messages
o Processes can be on any machine
o Processes can be created independently
o Used for clients/servers, distributed systems, etc.
o Socket API

* Pipes
o Processes must be on same machine
o One process spawns the other
o Used mostly for filters
o Pipe API

/

Pipes

» Provides an interprocess communication channel
for one producer and one consumer on same
machine

Process A § (P Process B

/

Filters

 Afilter is a process that reads from st di n and
writes to st dout
o e.g.,grep, sort, sed, cat, wc, awk ...

stdin st dout

Filter

» Piping and redirection connects filter sequences
s -1 | nore
who | grep mary | wc
s *.[ch] | sort
cat < foo | grep bar | sort > save

/

Creating a Pipe

» System call
int pipe(int fd[2]);
return O upon success and -1 upon failure
fd[O] is open for reading
fd[1] is open for witing

» Two coordinated processes created by f or k can
pass data to each other using a pipe.

p
Pipe Example

int pid, p[2];
pi pe(p)
pid = fork();

if (pid == 0) {
close(p[1]);
read using p[0] as fd until EOF ...
}
el se {
close(p[0]);
wite using p[l] as fd ...
close(p[1]); /* sends EOF to reader */
wai t (&st at us) ;

[

Dup

* Duplicate a file descriptor (system call)
int dup(int fd);
duplicates f d as the lowest unallocated descriptor

* Commonly used to redirect stdin/stdout
int fd;
fd = open(“foo”, O RDONLY, 0);
cl ose(0);
dup(fd);
cl ose(fd);

[

Dup (cont)

e For convenience...
dup2(int fdl, int fd2);
use f d2 to duplicate f d1
closes f d2 if it was in use

fd = open(“foo”, O RDONLY, 0);
dup2(fd, 0);
cl ose(fd);

10

[

Pipes and Standard 1/O

int pid, p[2];
pi pe(p);
pid = fork();

if (pid == 0) {
close(p[1]);
dup2(p[0], 0);
close(p[0]);
. read fromstdin ...
}

el se {
close(p[0]);
dup2(p[1],1);
close(p[1]);
. Wwite to stdout ...
wai t (&st at us);

[

Pipes and Exec()

int pid, p[2];
pi pe(p);
pid = fork();

if (pid == 0) {
close(p[1]);
dup2(p[0], 0);
close(p[0]);
execl (...);

}

el se {
close(p[0]);
dup2(p[1],1);
close(p[1]);

. Wwite to stdout ...

wait (&st at us);

11

K

Unix shell (sh, csh, bash, ...

Read command line from stdin

Expand wildcards

Interpret redirections < > |

pipe (as necessary), fork, dup, exec, wait
If & then don’t wait!

Start from code on previous slide,
edit it until it's a Unix shell!

12

