
Princeton University
COS 217: Introduction to Programming Systems

Assignment 6 Development Stages

Stage 0: Preliminaries

Learn the overall structure of ish and the pertinent background information.

Study the assignment statement. Study the lecture notes on system calls, processes and pipes, and signals.
Optionally study literature on UNIX system calls, processes, pipes, and signals. Chapter 7 of the book The
UNIX Programming Environment (Kernighan and Pike, Prentice Hall, Englewood Cliffs, NJ, 1984) is
appropriate.

Decide, at least tentatively, on the key modules in your program.

Stage 1: Lexical Analysis

Create the lexical analysis phase of ish. That is, create a lexical analyzer whose input is a sequence of
characters from a specified file and whose output is a token list.

Write the high-level code that calls your lexical analyzer. The code should first interpret commands from
file ~/.ishrc until it reaches EOF. (It should print each line that it reads from ~/.ishrc immediately after
reading it.) Then the code should interpret commands from stdin until it reaches EOF (simulated by ^D).

Testing: Create temporary code that prints the token list that your lexical analyzer produces.

Stage 2: Syntactic Analysis (alias Parsing)

Create the syntactic analysis phase of ish. That is, create a parser whose input is a token list and whose
output is a pipeline consisting of commands.

Write the high-level code that calls your parser. The code should pass the token list (created by your
lexical analyzer) to your parser.

Testing: Create temporary code that prints the pipeline that your parser produces.

Stage 3: Built-In Command Execution

Create an initial version of the execution phase of ish. Specifically, create code that executes the built-in
commands exit, cd, setenv, unsetenv.

Write the high-level code that calls your built-in command execution code.

Testing: Use ish to execute the exit command. (See the next stage for testing of cd, setenv, and
unsetenv.)

Page 1 of 2

Stage 4: Executable Binary Command Execution

Enhance the execution phase of ish so it can execute pipelines. For now assume that a pipeline consists of
a single executable binary command (i.e., no pipes), and that neither stdin nor stdout are redirected. Use
the fork and execvp or execlp system calls.

Testing: Use ish to execute numerous executable binary commands (cat, more, etc.) with and without
arguments. Test the cd built-in command (implemented in Stage 3) by executing it and the pwd and ls
executable binary commands. Test the setenv and unsetenv built-in commands (implemented in Stage 3)
by executing them and the printenv executable binary command.

Stage 5: Executable Binary Command Execution with execv or execl

Enhance the execution phase of ish so it uses execv or execl instead of execvp or execlp.

Testing: Repeat the tests for previous stages. Then attempt to execute some commands that are not in the
PATH, and make sure ish prints appropriate error messages. Attempt to execute some commands whose
files are not executable, and make sure ish prints appropriate error messages. Attempt to execute some
commands that are directories, and make sure ish prints appropriate error messages.

Stage 6: Executable Binary Command Execution with I/O Redirection

Enhance the execution phase of ish so it can execute executable binary commands that redirect stdin and/or
stdout.

Testing: Repeat the tests for previous stages, adding I/O redirection.

Stage 7: Pipeline Execution

Enhance the execution phase of ish so it can execute pipelines consisting of multiple executable binary
commands connected with pipes. Use the fork, execv or execl, pipe, and dup (or dup2) system calls.
Note that the first command of a pipeline may redirect stdin, and that the last command may redirect stdout.

Testing: Repeat the tests for previous stages, adding pipes. Use ish to execute the given sample_ishrc.txt
file.

Stage 8: Process Control

Enhance ish so that ^C does not kill ish, but does kill all child processes forked by ish that are currently
running.

Testing: Execute ish, and type ^C at its prompt; ish should ignore the signal. Create a program that
intentionally enters an infinite loop. Use ish to execute the program. Type ^C to kill the program.

Stage 9: History (for extra credit)

Enhance ish to implement the history built-in command and the !prefix facility.

Copyright © 2002 by Robert M. Dondero, Jr.

Page 2 of 2

	COS 217: Introduction to Programming Systems
	Assignment 6 Development Stages
	Stage 0: Preliminaries
	Stage 1: Lexical Analysis

