Operating Systems

CS 217

[

Operating System (OS)

* Provides each process with a virtual machine

o Promises each program the illusion of
having whole machine to itself

User User User
Process Process Process

OSKernd

Hardware

s

Operating System

» Coordinates access to physical resources
o CPU, memory, disk, i/o devices, etc.

e Provides services
o Protection

o Scheduling User User
o Memory management Process | | Process
o File systems
o Synchronization OSKernel
o etc.

Hardware

p
OS as Government

* Makes lives easy
o Promises everyone whole machine
(dedicated CPU, infinite memory, ...)
o Provides standardized services
(standard libraries, window systems, ...)

» Makes lives fair
o Arbitrates competing resource demands

 Makes lives safe

o Prevent accidental or malicious damage
by one program to another

o Phase 0: User at console

Phase 1: Batch processing
Phase 2: Interactive time-sharing
Phase 3: Personal computing

o

o

[o]

o Phase 4: ?

1981 1999 Factor

MIPS 1 1000 1,000
$/MIPS S100K §5 20,000

DRAM Capacity 128KB 256MB 2,000

Disk Capacity 10MB S0GB 5,000
Network B/W 9600h/s 155Mb/s 15,000

Address Bits 16 64 4
Users/Machine 10s <=1 <l

Computing price/performance affects OS paradigm

e o)
OS History
» Development of OS paradigms: Randy
Wang

J

P
Phase 0: User at Console

* How things work
o One program running at a time
o No OS, just a sign-up sheet for reservations
o Each user has complete control of machine

« Advantages
o Interactive!
o NoO one can hurt anyone else

» Disadvantages
o Reservations not accurate, leads to inefficiency
o Loading/ unloading tapes and cards takes forever and
leaves the machine idle

s

Phase 1: Batch Processing

e How things work Randy

o Sort jobs and batch those with similar needs Wang
to reduce unnecessary setup time

o Resident monitor provides “automatic job sequencing”:
it interprets “control cards” to automatically run a bunch
of programs without human intervention

» Advantage
o Good utilization of machine

» Disadvantagess
o Loss of interactivity (unsolvable)

s

)] Good for
o One job can screw up other jobs, |expensive hardware
need protection (solvable) and cheap humans
4
~N

Phase 2: Interactive Time-Sharing

e How things work Randy
o Multiple users per single machine Wang
o OS with multiprogramming and memory protection

» Advantages:
o Interactivity
o Sharing of resources

» Disadvantages:

o Does not always provide

reasonable response time Good for
cheap hardware
and expensive humans

[

Phase 3: Personal Computing

e How things work Randy
o One machine per person Wang
o OS with multiprogramming and memory protection

* Advantages:
o Interactivity
o Good response times

» Disadvantages:

o Sharing is harder Good for

very cheap hardware
and expensive humans

[

Phase 4: What Next?

» How will things work?
o Many machines per person?
o Ubiquitous computing?

* What type of OS?

Good for
very, very cheap hardware
and expensive humans

K b
Layers of Abstraction

Appl Proi
User ppJ' 2

process StdioLibrary | FI LE * stream
[

v

File System hierarchical file system
v
Kernel Storage variable-length segments
¥
Driver disk blocks

I

P
System Calls

* Processor modes
o user mode: can execute normal instructions and
access only user memory
o supervisor mode: can also execute privileged
instructions and access all of memory (e.g., devices)

o System calls
o user cannot execute privileged instructions
o users must ask OS to execute them - system calls
o system calls are often implemented using traps

o OS gains control through trap, switches to supervisor
model, performs service, switches back to user mode,
and gives control back to user

K

System Calls

* Method by which user processes invoke kernel
services: “protected” procedure call

Appl Prog
& fopen, fcl ose, printf,
fgetc, getchar, ...
Stdio Librar
user I d open, close, read,
kernd v wite, seek
File System
v

» Unix has ~150 system calls; see
o man 2 intro
o /usr/include/syscall.h

K

Interrupt-Driven Operation

» Everything OS does is interrupt-driven Randy
o System calls use traps to interrupt Wang

* An interrupt stops the execution dead in its tracks,
control is transferred to the OS
o Saves the current execution context in memory
(PC, registers, etc.)
o Figures out what caused the interrupt
o Executes a piece of code (interrupt handler)

o Re-loads execution context when done,
and resumes execution

p
Interrupt Processing

user program A operating user program B
svstem

interrupt vr SVC

cxh.-n!ing,l //—\
3 L

SOVE registers]

. i = idle
.
[reload registers |
> idle i executing
interrupt or SVC
| save registers
'~ idle

fni .u.gl '_/

[

System Calls (cont)

» Parameters passed...
o in fixed registers
o in fixed memory locations
o in an argument block, w/ block’s address in a register
o on the stack

» Usually invoke system calls with trap instructions
ota O
o with parameters in %g1 (function), %©0. . %05,
and on the stack

* Mechanism is highly machine-dependent

s

Read System Call

* Read call
nread = read(fd, buffer, n);

* Reads n bytes fromf d into buffer
o returns number of bytes read, or —1 if there’s an error

* In the caller
mov fd, %00
mov buffer, %01
nov n, %02
call read; nop
mov %00, nr ead

s

Read System Call (cont)

» User-side implementation (I i bc)
read: set 3,%gl

ta O
bcc L1; nop
set _errno, %gl
st %0, [Ygl]
set -1, %0

L1: retl; nop

» Kernel-side implementation
o sets the C bit if an error occurred

o stores an error code in %00
(see /usr/include/sys/errno.h)

p
Write System Call

int safe_ wite(int fd, char *buf, int nbytes)
{ .
int n;
char *p buf ;
char *q buf + nbyt es;
while (p < q) {
if ((n=wite(fd, p, g-p)) > 0)
p +=n
el se
perror(“safe wite:”);

}

return nbytes;

[

Buffered I/O

» Single-character 1/O is usually too slow

int getchar(void) {
char c;
if (read(0, &c, 1) == 1)
return c;
return ECF;

10

/

Buffered 1/0 (cont)

=)
@

\

e Solution: read a chunk and dole out as needed

int getchar(void) {
static char buf[1024];
static char *p
static int n = 0;

if (n--) return *p++;

read(0, buf, sizeof(buf));
f (n <= 0) return ECF

:O’

= buf;
eturn getchar();

n
[
n
p
r

/

Standard I/O Library

#define getc(p) (--(p)->_cnt >= 0 ? \
(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

typedef struct _iobuf {
int _cnt; /* numchars left in buffer */
char * _ptr; [/* ptr to next char in buffer */
char *_base; /* beginning of buffer */
int _bufsize;/* size of buffer */
short _flag; /* open node flags, etc. */
char _file; /* associated file descriptor */
} FILE;
extern FILE *stdin, *stdout, *stderr;

11

p
Summary

e OS virtualizes machine

o Provides each process with illusion of having whole
machine to itself

* OS provides services
o Protection
o Sharing of resources
o Memory management
o File systems
o etc.

» Protection achieved through separate kernel

o User processes uses system calls to ask kernel
to access protected stuff on its behalf

12

