Inter-Process Communication

CS 217

Pipes

» Provides an interprocess communication channel

Process AP § (}meLy process B

 Afilter is a process that reads from st di n and
writes to st dout

stdin st dout

Filter

/

Pipes (cont)

* Many Unix tools are written as filters
o grep, sort, sed, cat, wc, awk ...

» Shells support pipes
s —I | nore
who | grep mary | wc
s *.[ch] | sort
cat < foo | grep bar | sort > save

/

Creating a Pipe

» System call
int pipe(int fd[2]);
return O upon success and -1 upon failure
fd[0] is open for reading
fd[1l] is open for witing

» Two coordinated processes created by f or k can
pass data to each other using a pipe.

/

Pipe Example

int pid, p[2];

pi pe(p);
pid = fork();
if (pid == 0) {
close(p[1]);
read using p[0] as fd until EOF ...

}
el se {
close(p[0]);
. wite using p[1l] as fd ...
close(p[1]); /* sends EOF to reader */
wai t (&status);
}
-
Dup

* Duplicate a file descriptor (system call)
int dup(int fd);
duplicates f d as the lowest unallocated descriptor

* Commonly used to redirect stdin/stdout
int fd;
fd = open(“foo”, O RDONLY, O0);
cl ose(0);
dup(fd);
cl ose(fd);

p
Dup (cont)

» For convenience...
dup2(int fdl, int fd2);
use f d2 to duplicate f d1
closes f d2 if it was in use

fd = open(“foo”, O RDONLY, O0);
dup2(fd, 0);
cl ose(fd);

[

Pipes and Standard 1/O

int pid, p[2];
pi pe(p);
pid = fork();

if (pid == 0) {
close(p[1]);
dup2(p[0], 0);
cl ose(p[0]);
. read fromstdin ...
}
el se {
close(p[0]);
dup2(p[1],1);
close(p[1]);
. wite to stdout ...
wai t (&st at us) ;

K

Inter-Process Communication

* Pipes
o Processes must be on same machine
o One process spawns the other
o Used mostly for filters

» Messages
o Processes can be on any machine
o Processes can be created independently
o Used for clients/servers, distributed systems, etc.

K

b= \
Messaging Example: Client/Server

» Server: process that provides a service
o e.g., file server, web server, mail server
o called a passive participant: waits to be contacted

» Client: process that requests a service
o e.g., desktop machine, web browser, mail reader
o called an active participant: initiates communication

p
Network Subsystem

user
proce$ Appl Prog
i Socket API
TCPor UDP | byte-stream or datagram
v
kernel IP routes through the Internet
v
Driver transmits/receives on LAN
¥
NIC

p
Communication Semantics

o TCP

* Unreliable Datagram:
o UDP

* Reliable Byte-Stream (like a pipe):

/

Names and Addresses

* Host name
o like a post office name; e.g., www.cs.princeton.edu

* Host address
o like a zip code; e.g., 128.112.92.191

* Port number
o like a mailbox; e.g., 0-64k

/

Socket API

» Socket Abstraction
o end-point of a network connection
o treated like a file descriptor

» Creating a socket
o int socket(int domain, int type, int protocol)

o domain = PF_INET, PF_UNIX
o type = SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

/

Sockets (cont)

» Passive Open (on server)
int bind(int socket,
struct sockaddr *addr,
i nt addr_I en)
int listen(int socket, int backl og)
int accept (int socket,
struct sockaddr *addr,
i nt addr I en)

/

Sockets (cont)

» Active Open (on client)
I nt connect (i nt socket,
struct sockaddr *addr,
i nt addr _|I en)

» Sending/Receiving Messages
int send(int socket, char *buf,
int blen, int flags)
int recv(int socket, char *buf,
int blen, int flags)

p
Trivia Question

 How many messages traverse the Internet when
you click on a link?

