
1

Branching

CS 217

Condition Codes

• Processor State Register (PSR)

• Integer condition codes (icc)
� N set if the last ALU result was negative
� Z set if the last ALU result was zero
� V set if the last ALU result was overflowed
� C set if the last ALU instruction that modified the

icc caused a carry out of, or a borrow into, bit 31

. . .
31 23

. . .icc
20

2

Condition Codes (cont)

• cc versions of the integer arithmetic instructions
set all the codes

• cc versions of the logical instructions
set only N and Z bits

addcc sr c1, s r c2, dst
subcc sr c1, s r c2, dst

andcc sr c1, s r c2, dst
or c sr c1, s r c2, dst

Compare and Test Instructions

• Synthetic instructions can set condition codes

Synthetic Implementation
t s t r eg or cc r eg, %g0, %g0

cmp sr c1, sr c2 subcc sr c1, sr c2, %g0

cmp sr c , val ue subcc sr c , val ue, %g0

Using %g0 as the destination discards the result

3

Carry and Overflow

• If the carry bit is set
� the last addition resulted in a carry, or
� the last subtraction resulted in a borrow

� Used for multi-word addition
addcc %g3, %g5, %g7
addxcc %g2, %g4, %g6

(%g6,%g7) = (%g2,%g3) + (%g4,%g5)

• If the overflow bit is set
� result of subtraction (or signed-addition) doesn’t fit

the most significant word
is in the even register

Branches

• Tests on the condition codes implement
conditional branches and loops

If (a == 0)
a = 1;

else
a = 2;

4

Branch Instructions
• Transfer control based on icc

� b {,a} label

� target is a PC-relative address: PC + 4 x disp22
� where PC is the address of the branch instruction

00 a cond 010 disp22
31 29 28 24 21

a
n

. .
z

Branch Instructions (cont)
• Unconditional branches (and synonyms)

� ba jmp branch always
� bn nop branch never

• Raw condition-code branches
� bnz !Z
� bz Z
� bpos !N
� bneg N
� bcc !C
� bcs C
� bvc !V
� bvs V

5

Branching Instructions (cont)

• Comparisons

instruction signed
be Z
bne !Z
bg bgu !(Z | (N^V))
ble bleu Z | (N^V)
bge bgeu !(N^V)
bl blu N^V

unsigned
Z
!Z
!(C | Z))
C | Z
!C
C

Control Transfer

• Instructions normally fetched and executed
from sequential memory locations

• PC is the address of the current instruction,
and nPC is the address of the next instruction
(nPC = PC + 4)

• Branches and control transfer instructions
change nPC to something else

6

Control Transfer (cont)

• Control transfer instructions
� instruction type
� bicc conditional branch
� jmpl j ump and link
� rett return from trap
� call procedure call
� ticc traps

PC-relative addressing is like register
displacement addressing that uses the PC
as the base register

addressing mode
PC-relataive
register indirect
register indirect
PC-relative
register indirect
(vectored)

Control Transfer (cont)

• Branch instructions

nPC = PC + signextend(disp22) << 2

• Calls

nPC = PC + signextend(disp30) << 2

position-independent code does not depend on where
it’s loaded; uses PC-relative addressing

op disp30

op a cond op2 disp22

7

Branching Examples
• if-then-else

if (a > b) #def i ne a %l 0

c = a; #def i ne b %l 1

else #def i ne c %l 2

c = b; cmp a, b
bl e L1; nop
mov a, c
ba L2; nop

L1: mov b, c
L2: . . .

Branching Examples (cont)
• Loops

for (i=0; i<n; i++) #def i ne i %l 0
. . . #def i ne n %l 1

cl r i
L1: cmp i , n

bge L2; nop
. . .
i nc i
ba L1; nop

L2:

8

Branching Examples (cont)

• Alternative implementation
for (i=0; i<n; i++) #def i ne i %l 0

. . . #def i ne n %l 1
cl r i
ba L2; nop

L1: . . .
i nc i

L2: cmp i , n
bl L1; nop

