Branching

CS 217

p
Condition Codes

* Processor State Register (PSR)

icc

* Integer condition codes (icc)
o N setif thelast ALU result was negative
o Z setifthelast ALU result was zero
o V setif thelast ALU result was over flowed

o C setifthelast ALU instruction that modified the
icc caused a carry out of, or aborrow into, bit 31




e N
b
Condition Codes (cont) “g i
cc versions of the integer arithmetic instructions
set a” the COdeS addcc srcl, src2, dst
subcc srcl, src2, dst
cc versions of the logical instructions
set Only N and z bits andcc srcl, src2, dst
orc srcl, src2, dst
J

K

Compare and Test Instructions

» Synthetic instructions can set condition codes

Synthetic Implementation

tst reg orcc reg, %90, %90
cnp srcl,src2 subcc srcl, src2, %90
cnp src, val ue subcc src, val ue, %90

Using %g0 as the destination discards the result

J




/

Carry and Overflow

* If the carry bit is set
o the last addition resulted in a carry, or
o the last subtraction resulted in a borrow

o Used for multi-word addition
addcc %3, ¥%g5, Yg7 the most significant word
addxcc %g2, Y94, Y96 isin the even register

(%g6,%g7) = (%g2,%g3) + (%g4,%g5)

* If the overflow bit is set
o result of subtraction (or signed-addition) doesn't fit

/

Branches

» Tests on the condition codes implement
conditional branches and loops

If (a==0)
a=1,

else
a=2;




p
Branch Instructions

» Transfer control based on icc
a

o b| M |{a labe

z

00|a| cond 010 disp22

31 29 28 24 21

o targetis a PC-relative address: PC + 4 x disp22
o where PC is the address of the branch instruction

/

Branch Instructions (cont)

» Unconditional branches (and synonyms)

o ba jmp branch always
o bn nop branch never

 Raw condition-code branches

o bnz 1z
o bz Z
o bpos IN
o bneg N
o bcc IC
o bcs C
o bvc v
o bvs \Y




p
Branching Instructions (cont)

» Comparisons

instruction signed unsigned
be Z Z

bne 1Z 1z
bgbgu !(Z](N"V)) (C]2)
blebleu Z | (N*V) Cl|z
bge bgeu !(N"V) IC

bl blu N~V C

p
Control Transfer

* Instructions normally fetched and executed
from sequential memory locations

 PC is the address of the current instruction,
and nPC is the address of the next instruction
(nPC =PC + 4)

 Branches and control transfer instructions
change nPC to something else




K

Control Transfer (cont)

e Control transfer instructions

o instruction type addressing mode

o bicc conditional branch PC_-reIat_aiv_e

o jmpl jump and link register indirect

o rett returnfromtrap register I_ndlrect

o call procedurecall PC-relative

o ticc traps register indirect
(vectored)

PC-relative addressing is like register
displacement addressing that uses the PC
as the base register

K

Control Transfer (cont)

e Branch instructions

op|a| cond op2 disp22
nPC = PC + signextend(disp22) << 2

e Calls

op disp30
nPC = PC + signextend(disp30) << 2

position-independent code does not depend on where
it's loaded; uses PC-relative addressing




[

Branching Examples

if (@>Dh)
c=a;

else
c=b;

 f-then-else

#define a %40
#define b % 1
#define ¢ %2
cnp a, b

ble L1; nop
nov a, c

ba L2; nop
nmov b, c

[

Branching Examples (cont)

* Loops

for (i=0; i<n; i++)

#define i %0
#define n % 1

clr i
L1: cnp i,n
bge L2; nop
inc i
ba L1; nop

L2:




[

Branching Examples (cont)

 Alternative implementation
for (i=0; i<n; i++)  #define i %0
.o #define n % 1
clr i
ba L2; nop
L1 . . .
inc i
L2: cnp i,n
bl L1; nop




