
System Implementation Strategies
+ Raft Leader Election

March 2025

1

2

Overview

● Successful System Implementation Strategies
○ Understand the Concepts and Code Structure
○ Iterative Design Process
○ Modular Programming
○ Tips on Debugging

● Raft Leader Election

3

Understanding Concepts and Code Structure

4

Understand the Concept and Code Structure

● What is the conceptual system you want to build?
○ Understand the concept and verify your knowledge with some examples
○ Rewrite the algorithm to some pseudocode, which can serve as the guide during actual

programming
● How is the system physically built?

○ Read the skeleton code
○ Map the algorithms/concepts to the given code structure
○ Draw flow charts to understand the code flow

● How to use the system?
○ Read the testing script to see how an external user will talk to our system and invoke its APIs

to accomplish desired tasks

5

Concept

Build

Usage

Understand Concept and Code Structure

● Fully comprehend the algorithm
● Spend time to map your understanding of the concept to the starter code

○ For both the system interface and individual modules, understand what data is transferred
between and how

● Charts and pseudocode can help A LOT!

6

Concept Build Usage

How is the System Physically Built?

Understand the simulator’s implementation (see simulator.go)
● The role of the simulator
● Methods it uses to interact with the server module

Server 1

Server 3

Server 2

...

Simulator

StartSnapshot(server_id)

NotifySnapshotComplete
(server_id, snap_id)

CollectSnapshot
(snap_id)

7

Concept Build Usage

How is the System Physically Built?

Understand the server’s implementation (see server.go)
● Methods it uses to communicate with each other
● Methods it uses to take a local snapshot

Server 3

...

Simulator

StartSnapshot
(snap_id)

HandlePacket
(msg)

Server 2

HandlePacket
(msg)

Server 1

HandlePacket
(msg)

Tick()

SendTokens()

SendTokens()

SendTokens()

8

StartSnapshot
(snap_id)

StartSnapshot
(snap_id)

Concept Build Usage

How to Use the System?

Understand how the external environment talks to our system
(see test_common.go and snapshot_test.go)

Server 1

Server 3

Server 2

...

Simulator

Topology
File

Event File

InjectEvents()

Global Snapshot

9

Concept Build Usage

Iterative Design Process

10

Iterative Design Process

Common design methodology in product
design, including software design

You will understand a little more about your
design when you start implementing it.

● Start with the base case (aka simplest
case)

○ Example: one global snapshot at a time for
Assignment 2, distributed MapReduce
without any failure for Assignment 1.3

● Test regularly: should pass test case
for 2 nodes, then 3 nodes and …

● Add one more complexity at a time

Image Source from the Internet

11

Iterative Design Process: Distributed Snapshot

Key Idea: Start Simple, then Build Up

Phase 1: single snapshot at a time Phase 2: concurrent global snapshots

Simple design with
one snapshot at a
time

Implementation

Testing
Final design with
concurrent snapshots

Implementation

Testing

Done!☺

When passing all non-concurrent tests

12

Modular Programming

13

Modular Programming

Iterative design means code change every time when refining the design ☹
Modular programming

● Decompose the system into several independent modules/pieces
● Use a set of simple yet flexible APIs for intra-module communication

Advantages of modular programming

● Makes it easier to reason about and debug each component of your system
● Requires minimal change in the code

14

Modular Programming
State

Phase 1: single snapshot at a time

Divide our server module into 3 pieces:

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

15

● Execution logic

● Server State

● A layer of helper functions

Goal: write a flexible layer of helper
functions

Modular Programming: Single Snapshot

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// ID of the current snapshot
snapId: int (init to -1)

// State of the current snapshot
snapState: SnapshotState

// Track if each incoming channel has
seen a marker message (default to
false)
receivedMarker:
map(source channel, bool)

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 updateSnapshot(src, msg)
 // Also, update server’s local state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(src)
 if receiveAllMarkers() {
 // Notify simulator of the completion
 }
}

func updateSnapshot(src, msg) {
 snapMsg = SnapshotMessage(src, msg)
 snapState.messages.append(snapMsg)
}

func setReceivedMarker(src) {
 receivedMarker[src] = true
}

func firstMarkerMsg(snap_id) {
 return snapId != snap_id
}

Func receiveAllMarkers() {
 return receivedMarker.size == inboundLinks.size
}

16

Modular Programming
State

Phase 2: concurrent snapshots

● Update the state variables and
helper functions’ implementation

● Keep the API and execution logic
unmodified (almost)

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

17

Little change☺

Some change

Some change

Modular Programming: Concurrent Snapshots

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// States of concurrent snapshots
// map snapshot ID to its state
snapStates: map(int, SnapshotState)

// For each snapshot, track if each
incoming channel has seen a marker
message (default to false)
receivedMarker:
map(int, map(source channel, bool))

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 for snap_id in snapStates.keys() {
 updateSnapshot(snap_id, src, msg)
 }
 // Also, update server’s local state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(snap_id, src)
 if receiveAllMarkers(snap_id) {
 // Notify simulator of the completion
 }
}

func updateSnapshot(snap_id, src, msg) {
 snapMsg = SnapshotMessage(src, msg)
 snapStates[snap_id].messages.append(snapMsg)
}

func setReceivedMark(snap_id, src) {
 receivedMarker[snap_id][src] = true
}

func firstMarkerMsg(snap_id) {
 return (snap_id in snapStates.keys())
}

Func receiveAllMarkers(snap_id) {
 return receivedMarker[snap_id].size ==
inboundLinks.size
}

18

1. Update state variables

2. Update helper functions while keeping
most of its API intact

3. Minimal change on execution logic

Tips for Debugging

19

Tips on Debugging

● Start Early! (This is imperative for Assignment #4)
● Commit your code to Git often and early, and every time when you pass a

new test (enable comparative debugging later if necessary)
● Have proper naming for variables and add comments in your code

○ Easier for both you and others to read and debug your code
● Take advantage of Go Playground if you are not familiar with any Go specifics
● Print statements are your friend!
● Read this ASAP

20

https://play.golang.org/
https://blog.josejg.com/debugging-pretty/

Prints Are Your Friend ☺

● Always verify the behavior of your program! Sometimes, it may not align with
your expectation because of some hidden bugs.

● Track execution using printing statements to understand the code flow
○ Especially helpful in the early development of your design when the code complexity is not too

high
● Help catch errors in the early stage
● Example

○ In Assignment 2, we can print out the server state before and after HandlePacket() and
StartSnapshot() that you implement after each tick of the simulator

21

Raft Leader Election

22

Raft
● System for enforcing strong consistency (linearizability)

● Similar to Paxos and Viewstamped Replication, but much **simpler**

● Clear boundary between leader election and the log consensus

● Leader log is ground truth; log entries only flow in one direction (from leader

to followers)

Everyone sets a randomized timer that expires in [T, 2T] (e.g. T = 150ms)

When timer expires, increment term and send a RequestVote to everyone

Retry this until either:

1. You get majority of votes (including yourself): become leader

2. You receive an RPC from a valid leader: become follower again

Leader election

1. (Assignment 3) We did not vote for anyone else in this term

2. (Assignment 3) Candidate term must be >= ours

3. (Assignment 4) Candidate log is at least as up-to-date as ours

a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

Conditions for granting vote

currentTerm
votedFor
commitIndex
lastApplied
nextIndex
matchIndex

(log entries here)

0 0
-1
0
0
[]
[]

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

commitIndex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

nextIndex for each server, index of the next log entry to send
to that server

matchIndex for each server, index of highest log entry known to
be replicated on the server

(Only on leader)
Logs are 1-indexed

currentTerm
votedFor

<empty>

0 0
-1

currentTerm
votedFor

<empty>

1 0
-1

currentTerm
votedFor

<empty>

2 0
-1

Timeout

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 0
-1

currentTerm
votedFor

<empty>

2 0
-1

RequestVote
Term: 1
CandidateID: 0
LastLogIndex: -1
LastLogTerm: -1

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 1
0

currentTerm
votedFor

<empty>

2 1
0

RequestVoteReply
Term: 1
VoteGranted: true

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 1
0

currentTerm
votedFor

<empty>

2 1
0

currentTerm
votedFor

<empty>

0 1
0

currentTerm
votedFor

<empty>

1 1
0

currentTerm
votedFor

<empty>

2 1
0

AppendEntries
 (heartbeat)

Assignments 3 and 4
You will implement the leader election portion of Raft in Assignment 3
You will implement the log replication portion of Raft in Assignment 4

Use time.Timer and select statements to implement timeout
- Need to time out on heartbeats (AppendEntries) → Start election
- Need to time out on waiting for majority of votes

When voting for yourself, you can skip the RPC

Importance of readability
A luxury for small projects, but a necessity for large and complex projects

A4 will build on top of your solution for A3
A3 only accounts for about 20% of the work

Some tips:
● Duplicate code is really bad; avoid at all costs
● If a function is more than 30 lines, it is too long → split!
● Avoid nested if-else’s; use returns and continues where possible

