
1

Peer-to-Peer Systems and
Distributed Hash Tables

COS 418/518: Distributed Systems
Lecture 9 & 10

Mike Freedman, Wyatt Lloyd

1

1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service

2

Today

2

3

Distributed Application Architecture

client

Server
Client

Ask for page

Provide page

www.princeton.edu

client

client

Client-Server

Peer

Peer

Peer

Peer

Ask
for

Provide
Luca.mov

Nobody.mov

Peer-to-Peer

This lecture

3

• A distributed system architecture:
– No centralized control
– Nodes are roughly symmetric in function

• Large number of unreliable nodes
4

What is a Peer-to-Peer (P2P) system?

Node

Node

Node Node

Node

Internet

4

2

Successful adoption in some niche areas

1. Client-to-client (legal, illegal) file sharing
1. Napster (1990s), Gnutella, BitTorrent, etc.

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user anyway (Skype in old days)
– Issues: Privacy and control

5

P2P adoption

5

6

The lookup problem: locate the data

N1

N2 N3

N6N5

Publisher (N4)

N7

?Internet

put(“Oppenheimer.mp4”,
[content])

get(“Oppenheimer.mp4”)

6

7

Centralized lookup (Napster)

N1

N2 N3

N6N5
Publisher (N4)

N7

SetLoc(“Oppenheimer.mp4”,
IP address of N4)

Lookup(“Oppenheimer”)DB

key=“Oppenheimer.mp4”,
value=[content]

Simple and flexible, but
O(N) centralized state and a

single point of failure

7

8

Flooded queries (original Gnutella)

N1

N2 N3

N6N5
Publisher (N4)

N7

Robust and flexible, but O(N = number
of peers) messages per lookup

Lookup(“Oppenheimer”)

key=“Oppenheimer.mp4”,
value=[content]

8

3

9

Flooded queries pt 2 (Gnutella w/ SuperPeers)

N2 N3

N6N5

Publisher (N4)

N7

Lookup(“Oppenheimer”)

key=“Oppenheimer.mp4”,
value=[content]

key=“Oppenheimer.mp4”,
node=N4

N1

Robust, flexible, and more scalable
but still O(N/k) msgs per lookup

9

10

Tradeoffs in distributed systems

msgs

state

Napster

Gnutella

• High state
• Good performance
• Single PoF

• Nearly no state
• Many msgs
• Robust to failure

10

11

Tradeoffs in distributed systems

msgs

state

Napster

Gnutella

Ideal
• High state
• Good performance
• Single PoF

• Nearly no state
• Many msgs
• Robust to failure

11

12

Tradeoffs in distributed systems

msgs

state

Napster
• High state
• Good performance
• Single PoF

Gnutella

• Nearly no state
• Many msgs
• Robust to failure

DHT
(Chord)

• msgs < Gnutella
• state < Napster
• Robust to failure
• Less flexible “search”

12

4

13

What is a DHT (and why)?
• Distributed Hash Table: an abstraction of hash table in a distributed setting

 key = hash(data_one)

 lookup(key) à IP addr (Chord lookup service)
 send-RPC(IP address, put, key, data_two)

 send-RPC(IP address, get, key) à data_two

• Partitioning data in large-scale distributed systems

– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system

13

14

Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

user user user….
upload download

System

App

14

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

15

DHT is expected to be

15

1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service

16

Today

16

5

• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key) mod 2^{160}
– Node identifier = SHA-1(IP address) mod 2^{160}

• What is “SHA-1”?
– SHA-1 is a cryptographic hash function that maps input to 160-bit output hash
– Some properties:

1. Output hashes looks randomly distributed across output space
2. Given hash1, hard to find input1 where SHA1(input1) = hash1
3. Given input1 and hash1, hard to find input2 where SHA1(input2) = hash1
4. Hard to find input1 and input2 where SHA1(input1) = SHA1(input2)

17

Chord identifiers

17

• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key) mod 2^{160}
– Node identifier = SHA-1(IP address) mod 2^{160}

• How does Chord partition data?
– i.e., map key IDs to node IDs

• Why hash key and address?
– Uniformly distributed in the ID space
– Hashed key à load balancing; hashed address à independent failure

18

Chord identifiers

18

• System of n nodes: 1…n
– Node that owns key is assigned via hash(key) mod n
– Good load balancing

• What if a node fails?
– Instead of n nodes, now n -1 nodes
– Mapping of all keys change, as now hash(key) mod (n-1)

19

Alternative: mod (n) hashing

• N = 5
– 12594 mod 5 = 4
– 28527 mod 5 = 2
– 816 mod 5 = 1
– 716565 mod 5 = 0

• N = 4
– 12594 mod 4 = 2
– 28527 mod 4 = 3
– 816 mod 4 = 0
– 716565 mod 4 = 1

19

20

Consistent hashing [Karger ‘97]
Data partitioning

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Identifiers/key space

20

6

21

Consistent hashing [Karger ‘97]
Data partitioning

Key is stored at its successor: node with next-higher ID

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

21

22

Consistent hashing [Karger ‘97]
Strawman lookup vis successors

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Look up key 1
on successor

node 5O(N) messages and hops!

Identifiers/key space

Try node 1

Try node 0

Try node 6

Key 1

22

23

Consistent hashing [Karger ‘97]
Observation about last hop

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space
Key 1

Try to find key’s predecessor node as fast as possible.
This precedessor will know key’s successor (owner).

Try node 1

23

24

Chord – finger tables for find_predecessor

3-bit
ID space

0
1

2

3
4

5

6

7

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

Separators
(key ids)

Key ranges
for lookup

Successors
of separators
(node ID to contact
 when looking up
key in key range)

Example for node N = 1:
• 1 + 1 mod 8 => 2
• 1 + 2 mod 8 => 3
• 1 + 4 mod 8 => 5

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

N 2k-1

“Finger” is node immediately
succeeding separator

24

7

25

Chord – finger tables for find_predecessor

25

26

Chord – finger tables for find_predecessor

3-bit
ID space

0
1

2

3
4

5

6

7
2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

O(logN) messages
and hops!

Node 1

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

26

27

Chord – finger tables

From Chord ToN paper

27

• A binary lookup tree rooted at every node
– Threaded through other nodes' finger tables

• Better than arranging nodes in a single tree
– Every node acts as a root

• So there's no root hotspot
• No single point of failure
• But a lot more state in total: N nodes each have O(log N)

28

Implication of finger tables

28

8

• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of nodes (peers)

• Scalable: O(log N) state per node

• Robust: survives massive failures

29

Chord lookup algorithm properties

29

30

Chord – Recursive vs. Iterative Lookup

0
1

2

3
4

5

6

7
0

1

2

3
4

5

6

7

get(key 1)

Recursive Lookup Iterative Lookup

30

31

System Dynamics

• Handling node joins

• Handling node failures

– Rebuilding lookup structures

– Ensure data durability

31

32

Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7
2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

Node
Identifiers/key space

Identifiers have m = 3 bits
Key space: [0, 23-1]

“Finger” is node immediately
succeeding separator

32

9

33

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Node 2 joins by first
contacting any known node,

e.g., Node 0

Lookup id 2Identifiers/key space

33

34

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3Identifiers/key space

34

35

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3

Moves key 2 to node 2

Identifiers/key space

35

36

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Periodic stabilization messages
from each node to its successor

maintain node positions

Identifiers/key space

36

10

37

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

Pseudocode from Rodrigo Fonseca’s lecture notes

37

38

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

38

39

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

39

40

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

40

11

41

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

41

42

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

42

43

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Points to successor

Look up key 1

43

44

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Points to successor

Succ. of id 7
(Succ. Of node 6)

Look up key 1

44

12

45

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

Look up key 1

r-nearest successors
(r = logN)

Points to successor

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Succ. of id 7
(Succ. Of node 6)

45

46

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look
up key 7?

r-nearest successors
(r = logN)

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

46

47

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

r-nearest successors
(r = logN)

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 1

What if look
up key 7?

47

48

DHash replicates data blocks at r successors

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

r-nearest successors
(r = logN)

Key 7

Key 7

“Adjacent” nodes in the ring may
be far away in the network

 à Independent failures

Get data
under key 7

48

13

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHT, P2P

49

Today

49

Why don’t all services use P2P?

• High latency and limited bandwidth between peers
(vs. intra/inter-datacenter, client-server model)
– 1 M nodes = 20 hops; 50 ms / hop gives 1 sec lookup latency

(assuming no failures / slow connections…)

• User computers are less reliable than managed servers

• Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice

50

50

• Seem promising for finding data in large P2P systems
• Decentralization seems good for load, fault tolerance

• But: the security problems are difficult
• But: churn is a problem, particularly if log(n) is big

• DHTs have not had the hoped-for impact

51

DHTs in retrospective

51

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Amazon

Dynamo and other systems
• Replication for high availability, efficient recovery

• Incremental scalability
– Peers join with capacity, CPU, network, etc.

• Self-management: minimal configuration

52

What DHTs got right

52

