Distributed Snapshots

1 VET | NOV h
TES | TAM
Al EN | TVM |}

COS 418/518: Distributed Systems
Lecture 7

Wyatt Lloyd, Mike Freedman

Distributed Snapshots

 What is the state of a distributed system?

San Francisco
acct1 balance = $1000
acct2 balance = $2000

New York
acct1 balance = $1000
acct2 balance = $2000

System model

* N processes in the system with no process failures
« Each process has some state it keeps track of

* There are two first-in, first-out, unidirectional channels between
every process pair P and Q
 Call them channel(P, Q) and channel(Q, P)
* The channel has state, too: the set of messages inside

* All messages sent on channels arrive intact, unduplicated, in order

Aside: FIFO communication channel

« “All messages sent on channels arrive intact, unduplicated, in order”

* Q: Arrive?

* Q: Intact?

* Q: Unduplicated?
* Q: In order?

* TCP provides all of these when processes don'’t falil

Global snapshot is global state

« Each distributed application has a number of processes
running on a number of physical servers

* These processes communicate with each other via channels

A captures
1. The local states of each process (e.g., program variables), and
2. The state of each communication channel

Why do we need snapshots?

* Checkpointing: Restart if the application fails
 Collecting garbage: Remove objects that aren’t referenced

* Detecting deadlocks: The snapshot can examine the current
application state

* Process A grabs Lock 1, B grabs 2, A walits for 2, B waits for 1... ...

System model: Graphical example

 Let’s represent process state as a set of colored tokens

* Suppose there are two processes, P and Q:

Process P:

P

channel(P, Q)

Process Q:

channel(Q, P)

Q

" ®
o

When is inconsistency possible?

* Suppose we take snapshots only from a process perspective

« Suppose snapshots happen independently at each process

 Let’s look at the implications...

Problem: Disappearing tokens

* P, Q put tokens into channels, then snapshot

e

P={G} Q={R,P}

10

Problem: Duplicated tokens

* P snapshots, then sends Y
* Q receives Y, then snapshots

P={G,Y} Q={Y,R,PB,0O}

11

ldea: “Marker” messages

« What went wrong?

 We should have captured the state of the as well
» Avoids missing tokens

 We should have coordinated snapshots at different processes
» Avoids duplicate tokens

* Let’s send a A
« Used to capture channel state and coordinate different processes
 Distinct from other messages
« Channels deliver marker and other messages FIFO

Chandy-Lamport Algorithm: Overview

« We’ll designate one node (say P) to start the snapshot
* Without any steps in between, P:
1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

 Nodes remember whether they have snapshotted

* On receiving a marker, a non-snapshotted node performs
steps (1) and (2) above

Chandy-Lamport: Sending process

* P snapshots and sends marker, then sends Y

Send marker on all outgoing channels
 Immediately after snapshot
» Before sending any further messages

P | " Q
ey =0 o0
© o

snhap: P={G, Y}

Chandy-Lamport: Receiving process (1/2)

At the same time, Q sends orange token O
* Then, Q receives marker A

* On receiving marker on channel ¢ record c’s state as empty
channel(P,Q) ={}

P @A QA
® |<

|
P={G,Y} Q={R,P B}

Chandy-Lamport: Receiving process (2/2)

* Q sends marker to P
* P receives orange token O, then marker A

« On receiving marker on ¢ record c’s state: all msgs from ¢ since snapshot

channel(P,Q) =

{}
P Q
© > o0

P={G, Y} BN) a={R R B}

Chandy-Lamport Algorithm: Details

« We'll designate one node (say P) to start the snapshot
« Without any steps in between, P:
1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel
3. Starts recording messages on each inbound channel

* Nodes remember whether they have snapshotted

* On receiving a marker on channel c
* If (-snapshotted) then performs steps 1—3
« 4. Stop recording messages on channel ¢

Chandy-Lamport Puzzle #1

Is this snapshot possible? And if so, how?

P ={G},
chan(P, Q) ={Y},
Q ={R,P},

chan(Q, P) ={B, O},

©

®

Chandy-Lamport Puzzle #2

Is this snapshot possible? And if so, how?

P ={G,Y,R,R,B,0}
chan(P, Q) ={}
Q ={}

chan(Q, P) ={}

O,

®

TR

Chandy-Lamport Puzzle #3

Is this snapshot possible? And if so, how?

P ={}
chan(P, Q) ={}
Q ={}

chan(Q,P) ={G,Y,R,P,B,0}

O,

®

TR

Chandy-Lamport Puzzle #4

Is this snapshot possible? And if so, how?

P ={G,Y,}
chan(P, Q) ={R}
Q ={B, 0}

chan(Q, P) ={P}

* Is it possible (and how) if we add:
» A process T and just a chan(T,P)?
* T, chan(T,P) and chan (T,Q)?

®
O,

TR

P={G,Y}

Chandy-Lamport Puzzle #5

Is this snapshot possible? And if so, how?

P ={G,Y,}
chan(P, Q) ={}
chan(P, T) ={}

Q ={B,0}
chan(Q, P) ={P}
chan(Q, T) ={R}

T ={}
chan(T, P) ={}
chan(T, Q) ={}

P

O,

O,

P={G,Y}m
=

I@

1R

Chandy-Lamport Puzzle #6

Is this snapshot possible? And if so, how?

P ={GY,}
chan(P, Q) ={}
chan(P, T) ={}

Q

chan(Q, P)
chan(Q, T)
T

chan(T, P)
chan(T, Q)

| A | N | N | N | I |
ey el pufm gl el pd
et Syt St pd

P

O,

O,

-eofll L

T={

}

Q

©0e
©

Terminating a Snapshot

* Distributed algorithm: No one process decides when it terminates

« Eventually, all processes have received a marker (and recorded
their own state)

* All processes have received a marker on all the N-1 incoming
channels (and recorded their states)

 Later, a central server can gather the local states to build a global
snapshot

Take-away points

 Distributed Global Snapshots

* FIFO Channels: we can do that!
« Chandy-Lamport algorithm: use marker messages to coordinate

* Reasoning about concurrency
* You’re doing it!
» Use trickier and trickier puzzle methodology to understand how
(and if) systems really work

