
2/9/25

1

Time 2: Totally Ordered
Multicast & Vector Clocks

COS 418/518: Distributed Systems
Lecture 6

Wyatt Lloyd, Mike Freedman

1

• A New York-based bank wants to make its transaction ledger
database resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

2

2

• Replicate the database, keep one copy in sf, one in nyc
• Client sends reads to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

3

3

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

4

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

4

2/9/25

2

SF

a) Add Alice to Bank

b) Alice deposits $1000

NY

Physical time ↓

c) Remove Alice from Bank

e) Alice deposits $100

d) Re-add Alice to Bank

f) 1% interest payment

Q2) What are all the valid lamport
timestamp total orders of a—f?

Q1) What is bad about using
order a,b,d,c?

5

1. On receiving an update from client, broadcast to others (including yourself)
• (Node -> node communication is FIFO and asynchronous)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

6

6

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔ ✔✔

(Acks to self not shown here)
7

✘ P2 processes %

7

1. On receiving an update from client, broadcast to others (including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every replica (including yourself)

only from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Correct version)

8Why is this correct?

8

2/9/25

3

9

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Acks to self not shown here)

$
1.1

✔

9

• Does totally-ordered multicast solve the problem of multi-site
replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?

10

10

Lamport Clocks Review
Q: a à b =>

Q: LC(a) < LC(b) =>

Q: a || b =>

LC(a) < LC(b)

b -/-> a (a à b or a || b)

nothing

11

• Lamport clock timestamps do not capture causality

• Given two timestamps C(a) and C(z), want to know whether
there’s a chain of events linking them:

a à b à ... à y à z

12

Lamport Clocks and Causality

12

2/9/25

4

• One integer can’t order events in more than one process

• So, a Vector Clock (VC) is a vector of integers, one entry
for each process in the entire distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally

precede e

13

Vector clock: Introduction

13

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

14

Vector clock: Update rules

14

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

15

Vector clock: Example

P1

a
b

c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

15

• Rule for comparing vector timestamps:
• V(a) = V(b) when ak = bk for all k
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:
• V(a) || V(b) if ai < bi and aj > bj, some i, j

16

Comparing vector timestamps

16

2/9/25

5

• V(w) < V(z) then there is a chain of events linked by
 Happens-Before (à) between a and z

• V(a) || V(w) then there is no such chain of events between a and w

17

Vector clocks capture causality

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a

17

• Rule for comparing vector timestamps:
• V(a) = V(b) when ak = bk for all k

• They are the same event
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• a à b

• Concurrency:
• V(a) || V(b) if ai < bi and aj > bj, some i, j

• a || b
18

Comparing vector timestamps

18

Two events a, z

Lamport clocks: C(a) < C(z)
 Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
 Conclusion: a à z

19

Vector clock timestamps precisely capture
happens-before relation (potential causality)

19 20

