Atomic Commit and
Concurrency Control

f| vET [Nov (8
TES [TAM
f| N [TvM |}

COS 418/518: Distributed Systems
Lecture 16

Wyatt Lloyd, Mike Freedman

Lets Scale Strong Consistency!

1. Atomic Commit
* Two-phase commit (2PC)

2. Serializability
« Strict serializability

3. Concurrency Control:
* Two-phase locking (2PL)
* Optimistic concurrency control (OCC)

Atomic Commit

* Atomic: All or nothing

» Either all participants do something (commit)
or no participant does anything (abort)

« Common use: commit a transaction that
updates data on different shards

Transaction Examples

« Bank account transfer
 Turing -= $100
« Lovelace += $100

* Maintaining symmetric relationships
* Lovelace FriendOf Turing
 Turing FriendOf Lovelace

* Order product
« Charge customer card

 Decrement stock
» Ship stock

Relationship with Replication

* Replication (e.g., RAFT) is about doing the thing multiple
places to provide fault tolerance

« Sharding is about doing things multiple places for
scalability
* Atomic commit is about doing things in places

together

Relationship with Replication

Replication Dimension

—

Sharding
Dimension

Focus on Sharding for Today

Replication Dimension

Sharding
Dimension

Atomic Commit

* Atomic: All or nothing

* Either all participants do something (commit) or no
participant does anything (abort)

 Atomic commit accomplished with two-phase commit
protocol (2PC)

Two-Phase Commit

e Phase 1

« Coordinator sends Prepare requests to
all participants

« Each participant votes yes or no
» Sends yes or no vote back to coordinator
» Typically acquires locks if they vote yes

» Coordinator inspects all votes
- If all yes, then commit
 If any no, then abort

 Phase 2

Coordinator sends Commit or
Abort to all participants

If commit, each participant does
something

Each participant releases locks

Each participant sends an Ack
back to the coordinator

Unilateral Abort

participant can cause an abort
* With 100 participants, if 99 vote yes and 1 votes no => abort!

« Common reasons to abort:
« Cannot acquire required lock
 No memory or disk space available to do write
* Transaction constraint fails
* (e.g., Alan does not have $100)

* Q: Why do we want unilateral abort for atomic commit?

Atomic Commit

* All-or-nothing
* Unilateral abort

* Two-phase commit
* Prepare -> Commit/abort

Lets Scale Strong Consistency!

1. Atomic Commit
* Two-phase commit (2PC)

2. Serializability
* Strict serializability

3. Concurrency Control:
* Two-phase locking (2PL)
* Optimistic concurrency control (OCC)

Two Concurrent Transactions

transaction transfer(A, B):

begin_tx
a < read(A)

_ if a <10 then ab
transaction sum(A, B): 'e.;: Wﬁi‘eafi—fé)
begin_tx b & read(B)

a € read(A) et

b & read(B) 4
printa+b

commit_tx 7

Isolation Between Transactions

sum appears to happen either completely
before or completely after transfer

* l.e., It appears that all ops of a transaction happened
together

» Schedule for transactions is an ordering of the
operations performed by those transactions

Problem from Concurrent Execution

e Serial exec“ctlons —transfer then sum:

transfer: rA Wy g Wg ©

» Concurrent >~fion can req“—-state that differs from any serial
execution: (debit credit

transfer: ra Wa rg wg ©

sum: ra I'g ©

Time =
© = commit

Isolation Between Transactions

* [solation: sum appears to happen either completely
before or completely after transfer

* l.e., It appears that all ops of a transaction happened
together

» Given a schedule of operations:

* Is that schedule in some way “equivalent” to a serial
execution of transactions?

16

Equivalence of Schedules

« Two operations from different transactions are
1. They read and write to the same data item
2. They write and write to the same data item

» Two schedules are if:
1. They contain the same transactions and operations

2. They order all conflicting operations of non-aborting
transactions in the same way

If:

Serializability

* A schedule is If it is equivalent to some serial
schedule

* I.e., non-conflicting ops can be reordered to get a serial
schedule

A Serializable Schedule

* A schedule is serializable if it is equivalent to some serial
schedule

* I.e., non-conflicting ops can be reordered to get a serial
schedule

transfer: r, w, rg wg, ©

sum: > ryfrg ©
Iz
'Serlal schedule'! Time >

Conflict-free! © = commit

19

A Non-Serializable Schedule

* A schedule is serializable if it is equivalent to some serial
schedule

* I.e., non-conflicting ops can be reordered to get a serial
schedule

transfer: r, wjy rg wg ©

sum: ra rg ©

............. 1

-But In a serial schedule, sum'’s reads
.elther both before w, or both after wg

N

i © = commit

20

Linearizability vs. Serializability

- Linearizability: a guarantee about - Serializability is guarantee about
single operations on single objects transactions over one or more objects

* Once write completes, all reads that Doesn’t impose real-time constraints
begin later should reflect that write

= Serializability + real-time ordering
— Intuitively Serializability + Linearizability
— We’'ll stick with only Strict Serializability for this class

Consistency Hierarchy

Strict Serializability

'

Linearizability

'

Sequential Consistency

l

Causal+ Consistency

'

Eventual Consistency

e.g., Spanner

e.d., RAFT

e.g., Bayou

e.d., Dynamo

Lets Scale Strong Consistency!

1. Atomic Commit
 Two-phase commit (2PC)

2. Serializability
« Strict serializability

3. Concurrency Control:

* Two-phase locking (2PL)
» Optimistic concurrency control (OCC)

23

Concurrency Control

« Concurrent execution can violate serializability

* We need to that concurrent execution so we do
things a single machine executing transactions one at a time
would

Concurrency Control Strawman #1

* Big global lock
* Acquire the lock when transaction starts
 Release the lock when transaction ends

* Provides strict serializability

 Just like executing transaction one by one because we are doing
exactly that

* No concurrency at all
 Terrible for performance: one transaction at a time

Locking

* Locks maintained on each shard
* Transaction requests lock for a data item
« Shard grants or denies lock

* Lock types
« Shared: Need to have before read object
» Exclusive: Need to have before write object

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

Concurrency Control Strawman #2

« Grab locks independently, for each data item (e.g., bank
accounts A and B)

transfer: 4, ry wy h, Az rg wg hg ©
sum: Aplp BAABrB 5,3@

Time =2
© = commit
4 / 4 = eXclusive- / Shared-lock; N\ / N = X-/ S-unlock

Two-Phase Locking (2PL)

* 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks
« Growing phase: transaction acquires locks
« Shrinking phase: transaction releases locks

* In practice:
« Growing phase is the entire transaction
 Shrinking phase is during commit

2PL Provide Strict Serializability

 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: 4, ry wy hj @ rg wg hg ©
sum: Apra N ADprg g ©
'2PL precludes this non-serializable interleaving Time >
© = commit

4 /4 =X-/S-lock; N\ / N =X-/S-unlock

2PL and Transaction Concurrency

 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: Ap M A, W, Agrg dgWg*O©

sum: Aplp Ag gk ©

.2PL permits this serializable, interleaved schedule _

--- ' Time >
© = commit

4 /4 =X-/S-lock; A / N = X-/ S-unlock; >k = release all locks

2PL Doesn’t Exploit All Opportunities for Concurrency

 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: r, wjy rg wg ©
sum: ra rg ©

© = commit
(locking not shown)

Issues with 2PL

« What do we do if a lock is unavailable?
« Give up immediately?
 Wait forever?

» Waiting for a lock can result in deadlock
* Transfer has A locked, waiting on B
« Sum has B locked, waiting on A

 Many different ways to detect and deal with deadlocks

More Concurrency Control Algorithms

* Optimistic Concurrency Control (OCC)

* Multi-Version Concurrency Control (MVCC)

