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Distributed Systems, What?

1) Multiple computers

2) Connected by a network

3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?

* Failure
* Limited computation/storage/...

* Physical location

Distributed Systems, Where?

» Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Walmart)

« File Sync (e.g., Dropbox, iCloud)

« Social Networks (e.g., Facebook, Twitter)
» Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

« Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, Call of Duty)
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“The Cloud” is not amorphous

Google 2012
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100,000s of physical servers
710s MW energy consumption‘ i

xAl Colossus:
100K NVIDIA H100 GPUs

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

14

Distributed Systems Goal

* Service with higher-level abstractions/interface

* e.g., file system, database, key-value store, programming model, ...

* Hide complexity

+ Scalable (scale-out)

* Reliable (fault-tolerant)

» Well-defined semantics (consistent)

» Do “heavy lifting” so app developer doesn’t need to
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Scalable Systems in this Class

» Scale computation across many machines
* MapReduce, Streaming Video Engine

+ Scale storage across many machines
» Dynamo, COPS, Spanner

Fault Tolerant Systems in this Class

* Retry on another machine
» MapReduce, Streaming Video Engine

* Maintain replicas on multiple machines
* Primary-backup replication
» Paxos
* RAFT
* Bayou
* Dynamo, COPS, Spanner
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Range of Abstractions and Guarantees

» Eventual Consistency
* Dynamo

» Causal Consistency
» Bayou, COPS

* Linearizability
» Paxos, RAFT, Primary-backup replication

« Strict Serializability
* 2PL, Spanner
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Advanced Topics
» Blockchain as distributed systems
» Al inference in distributed systems
20
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Learning Objectives

» Reasoning about concurrency
» Reasoning about failure
» Reasoning about performance

* Building systems that correctly handle concurrency and failure

» Knowing specific system designs and design components
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Research results matter: NoSQL
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Research results matter: MapReduce

Abstract
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Conclusion

* Distributed Systems
» Multiple machines doing something together

* Pretty much everywhere and everything computing now

» “Systems”
» Hide complexity and do the heavy lifting (i.e., interesting!)
« Scalability, fault tolerance, guarantees
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