Distributed Systems Intro

COS 418/518: Distributed Systems
Lecture 1
Spring 2025

Mike Freedman, Wyatt Lloyd

Distributed Systems, What?

1) Multiple computers

2) Connected by a network

3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?

* Failure
* Limited computation/storage/...

* Physical location

Distributed Systems, Where?

» Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Walmart)

« File Sync (e.g., Dropbox, iCloud)

« Social Networks (e.g., Facebook, Twitter)
» Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

« Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, Call of Duty)

1/29/25



“The Cloud” is not amorphous

Google 2012

1/29/25



1/29/25

b (S [Ty =




100,000s of physical servers
710s MW energy consumption‘ i

xAl Colossus:
100K NVIDIA H100 GPUs

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

14

Distributed Systems Goal

* Service with higher-level abstractions/interface

* e.g., file system, database, key-value store, programming model, ...

* Hide complexity

+ Scalable (scale-out)

* Reliable (fault-tolerant)

» Well-defined semantics (consistent)

» Do “heavy lifting” so app developer doesn’t need to

16

1/29/25



Scalable Systems in this Class

» Scale computation across many machines
* MapReduce, Streaming Video Engine

+ Scale storage across many machines
» Dynamo, COPS, Spanner

Fault Tolerant Systems in this Class

* Retry on another machine
» MapReduce, Streaming Video Engine

* Maintain replicas on multiple machines
* Primary-backup replication
» Paxos
* RAFT
* Bayou
* Dynamo, COPS, Spanner

17

Range of Abstractions and Guarantees

» Eventual Consistency
* Dynamo

» Causal Consistency
» Bayou, COPS

* Linearizability
» Paxos, RAFT, Primary-backup replication

« Strict Serializability
* 2PL, Spanner

19

18
Advanced Topics
» Blockchain as distributed systems
» Al inference in distributed systems
20

1/29/25



Learning Objectives

» Reasoning about concurrency
» Reasoning about failure
» Reasoning about performance

* Building systems that correctly handle concurrency and failure

» Knowing specific system designs and design components

21

Research results matter: NoSQL

D S

Store

Distribut b %

ABSTRACT

fce at Amazon com, one of the

of these fuilures drives the el
Softwaresysems

Categories and Subject

Reliabilty at massve scae is one of the biggest challenges we
the world; even the slightest outage has signiicant francial
consequences st The A
platform, which provides servies for .
s implemented on tp of an ifrastructur often of thousands of
network ents located in many dataceners
around the world. At this scale, smal and large compooents il
continuously and the way persistent

T paper presents the design and mplementation of Dynamo,

hat provides  novel intrfsce for

D42 (Operating Systems]: Storsge Mansgemment; D45 8 namber of

s Highly A

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Dedxa Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Wemner Vogels
Amazon com

largest ¢ <ommeree operations in

web sites worldwide,

s s managed in te face
Jibilty and. scaablty of the

acros maltiple data

devlopers 0 use.

Descriptors To meet th reliabilty and scalin necds, Amazon bas developed
siorage technologis, o which the Amazon Simple

Desling with filures in a ifrasrcture comprised o millionsof

be constracted in 3 manner that tests falure

Performance;

General Terms

Relibily.

tbems, Management, Measuremen, Prformance, Design,

Amazon S3),is probably the

best known. This paper prescas the
q

high_ rlisbiliy requirements and neod tight control over the

Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems
Mike Burrows, Google Inc.  —
[owe'me
v
ur se.
Abstract example, the Google File System (7] uses a Chubby lock o
. " 10 appoint a GFS master server, and Bigtable [3] uses Py
e D e Lok e Chubby in several ways: o clect a maste, 10 allow the
bl '“"‘ ;"k"m:‘;‘m‘“l"“"" Tor  master to discover the servers it controls, and to permit i wich
M oscly-coupted isuibuted sysem. Chuby provides  Sics o find the masicr. In addiion, both GFS and freson
et ioee bich like » dhariotes il svsteo ith gg.  Bigtable usc Chubby as a well-known and availsble loca- s can
S0 Iotirihios mmsh e s &% system with 8- 50 10 store 2 small amount of meta-data; in effect they
visory locks, but the design cmphass s on availabiity o SR SR SR PR B BT =
and relsbilty, s opposed 10 bigh performance. Many ey Some services use locks to partition work (st 3 fore
instances of the service have been used for over a year, Sestisedarderpatody
with several of them cach handling a fow tens of thou- e P er
g et Before Chubby was deployed, most distributed sys- onsn,
sands of clients concurrently. The paper describes the o epdpan . . oy
initial design and expected use, compares it with sctual ™S 3t Goog efieds o feisiney e =

22

23

Research results matter: MapReduce

Abstract

MapReduce is & programming model and an associ-
sted implementation fo processing and generating large
data sets. Users specify a map fuoction that processes a

Google,

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

T ——

Inc.

given day, etc. Most such computaions are conceptu

l amount of ime. The issues of bow 10

 distibute the data, and handie

values associaed with the same intermedise key. Many
real world tasks are expressibe in this model, a5 shown
in the paper

filures consp simpe compu
{ation with large amounts of complex code 10 deal with
these isues,

As a eaction o this complexity, we designed & new

modity machines. The run-time system takes care of the
detalsof parttoning the input data, scheduling the pro-
bandling -

il of paralilization, faul-tolerance, data disribution
and load balancing in a library. Our sbsracion i i

hin fail

communication. Thi all without any

and many other functional I We realized that
iying a map op-

xpericnce with paraliel and disrbuted systems o cas-
il wilize the resources of a lage distributed sysim.
Our implementation of MspReduce runs on  large
cluster of commexity machines and s highly scalabi:
a typical MapReduce computation processes many er-

ecaion 1o each logical “record” in our inpu in order fo
‘compute a st of intermedist keyAalue pais, and then

proprisily. Our use of 3 functonal model with user

éFlink

S distributed stream
computing platform

5 sToRM

24

1/29/25



Conclusion

* Distributed Systems
» Multiple machines doing something together

* Pretty much everywhere and everything computing now

» “Systems”
» Hide complexity and do the heavy lifting (i.e., interesting!)
« Scalability, fault tolerance, guarantees

25

1/29/25



